期刊文献+

基于伯努利吸盘抓取经编鞋面稳态过程的研究 被引量:2

Research on the steady-state process of grabbing warp knit uppers based on Bernoulli gripper
下载PDF
导出
摘要 针对经编鞋面透气多孔导致伯努利吸盘无法稳定抓取的问题,将经编鞋面简化成多孔介质模型,建立了伯努利吸盘抓取经编鞋面稳态过程的数学模型;利用Fluent软件对伯努利吸盘抓取经编鞋面稳态过程进行了数值模拟分析,并对伯努利吸盘抓取经编鞋面稳态过程进行了试验研究。结果表明:吸附力与供气压力呈正比例关系、与吸盘和经编鞋面的间距呈指数函数关系;试验获得伯努利吸盘抓取经编鞋面稳态下的最优状态,即在经编鞋面重力一定条件下,当间距为0.8 mm、吸附力等于经编鞋面重力时,供气压力最优。 To address the problem that Bernoulli gripper cannot grab warp knit uppers stably due to their breathable porosity,the warp knit uppers were simplified into a porous media model,and a mathematical model of the steady-state process of Bernoulli gripper grabbing warp knit uppers was established.The steady-state process of Bernoulli gripper grabbing warp knit uppers was numerically simulated by Fluent software and experimentally investigated.The results show that the suction force is proportional to the air supply pressure and exponential to the distance between the suction cup and the warp knit upper.The optimal state of Bernoulli gripper for grabbing warp knit uppers in steady state is obtained,i.e.,the air supply pressure is optimal when the distance is 0.8 mm and the suction force is equal to the gravity of the warp knit upper under the certain condition of the gravity of the warp knit upper.
作者 何帆 孟婥 张豪 孙以泽 HE Fan;MENG Zhuo;ZHANG Hao;SUN Yize(College of Mechanical Engineering,Donghua University,Shanghai 201620,China)
出处 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第1期79-84,92,共7页 Journal of Donghua University(Natural Science)
基金 国家重点研发计划项目(2018YFB1308800) 福建省“百人计划”项目(20180409)。
关键词 伯努利吸盘 经编鞋面 抓取 稳态过程 多孔介质模型 Bernoulli gripper warp knit uppers grabbing steady-state process porous media model
  • 相关文献

参考文献4

二级参考文献27

  • 1Advantages and challenges associated with the introduction of 450 mm wafers(2005)[DB/CD]. ITRS Starting Materials Sub-TWG, 2005.
  • 2IZUMI A. Non-contact holder device and non-contact holding and conveying device: USA, US029051Al[P]. 2006-11-28.
  • 3VINCENT V, PIERRE L, ALAIN D. Non-contact handling in microassembly: Acoustical levitation[J]. Precision Engineering, 2005, 29: 491-505.
  • 4PARK K H, LEE S K, YI J H, et al. Contaetless magnetically levitated silicon wafer transport system[J]. Mechatronics, 1996,6(5): 591-610.
  • 5LI Xin, KAWASHIMA K, KAGAWA T. Analysis of vortex levitation[J]. Experiment Thermal and Fluid Science, 2008, 32(8): 1 448-1 454.
  • 6LI Xin, KAWASHIMA K, KAGAWA T. Dynamic characteristics of vortex levitation[C]//SICE Annual Conference 2008. Japan: The University Electro Communications, 2008:1 175-1 180.
  • 7Seikal Yo, Katsuaki Takahashi, Masayuki Hosonoe, Kazuo Naka-no. Non-contact transport apparatus [P]. USA: US7690869B2, 2010-4-6.
  • 8香川利春,黎しん. 旋回流を用いた非接触搬送装置[C]//日本フル—ドパヮ—システム学会論文集.日本:東京工業大学出版社,2008.
  • 9北京大学数学系实验设计组. 正交实验法[M]. 北京: 科学普及出版社, 1979:138.
  • 10Guldi R L, Whitfield M T, Poag F D. Strategy and metrics for wafer handling automation in legacy semiconductor fab[J]. IEEE Transactions on Semiconductor, 1999, 12(1): 102108.

共引文献21

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部