摘要
The microstructure characteristics of TiNi alloy were investigated to elucidate the active deformation mechanisms during hot rolling and the corresponding tribology performance.The deformation was mainly dominated by a combination of mechanical twinning involving the {114}_(B2) and {112}_(B2) twins,dislocations,and stacking faults during the manufacturing process.Moreover,various heat treatments were performed to differentiate the discrepancies in tribological behaviors of hot-rolled and heattreated alloys.Hot-rolled microstructures with high defect density approximate to nanoscale precipitates through aging as the wear resistance of the alloy improves,albeit it is softer compared to the aged one.As demonstrated by the X-ray diffraction(XRD) results of the wear tracks,microstructures undergo the stress-induced martensitic(SIM) transformation during dry sliding.From differential scanning calorimetry(DSC) analysis,the martensitic transformation temperature is lowered by defects in the austenite phase.The activation of the SIM transformation can be a sluggish process owing to the effect of twinning,where both primary and secondary twins are involved.Furthermore,a reversible transformation that is related to pseudoelasticity causes a decrease in wear volume at room temperature,which is higher than the austenite finish temperature.Meanwhile,abrasive wear advances toward adhesion.Additionally,the hot-rolled sheet with y fiber-{111}//ND(normal direction) exhibits better wear resistance compared to the sheet with α fiber-{100}//ND.
出处
《Rare Metals》
SCIE
EI
CAS
CSCD
2021年第12期3616-3626,共11页
稀有金属(英文版)
基金
financially supported by the National Natural Science Foundation of China (Nos. U1737204and 51673205)
the Key Research Program of Frontier Science
Chinese Academy of Sciences (No. QYZDJ-SSW-SLH056)。