期刊文献+

基于RELM的时间序列数据加权集成分类方法 被引量:5

A weighted ensemble classification method for time series data based on regularized extreme learning machine
下载PDF
导出
摘要 时间序列数据通常是指一系列带有时间间隔的实值型数据,广泛存在于煤矿、金融和医疗等领域。为解决现有时间序列数据分类问题中存在的含有大量噪声、预测精度低和泛化性能差的问题,提出了一种基于正则化极限学习机(RELM)的时间序列数据加权集成分类方法。首先,针对时间序列数据中所含有的噪声,利用小波包变换方法对时间序列数据进行去噪处理。其次,针对时间序列数据分类方法预测精度低、泛化性能较差的问题,提出了一种基于RELM的加权集成分类方法。该方法通过训练正则化极限学习机(RELM)隐藏层节点数量的方法,有效选取RELM基分类器;通过粒子群优化(PSO)算法,对RELM基分类器的权值进行优化;实现对时间序列数据的加权集成分类。实验结果表明,该分类方法能够对时间序列数据进行有效分类,并提升了分类精度。 Time series data usually refer to a series of real value data with time interval,which widely exists in coal mine,finance,medical and other fields.In order to solve the problems of large amount of noise,low prediction accuracy and poor generalization performance in the existing time series data classification problems,a weighted ensemble classification method based on regularized extreme learning machine(RELM)is proposed.Firstly,aiming at the noise contained in time series data,the wavelet packet method is used to denoise time series data.Secondly,in view of the low prediction accuracy and poor generalization performance of time series data classification method,a weighted ensemble classification method based on RELM is proposed.By training the number of hidden layer nodes of RELM,RELM base classifier is effectively selected.Through PSO method,the weight of RELM based classifier is optimized.Finally,weighted ensemble classification is performed on the time series data.Experimental results show that the method can effectively classify time series data and improve the classification accuracy.
作者 赵林锁 陈泽 丁琳琳 宋宝燕 ZHAO Lin-suo;CHEN Ze;DING Lin-lin;SONG Bao-yan(College of Mechanics and Engineering,Liaoning Technical University,Fuxin 123000;School of Information,Liaoning University,Shenyang 110036,China)
出处 《计算机工程与科学》 CSCD 北大核心 2022年第3期545-553,共9页 Computer Engineering & Science
基金 国家自然科学基金(62072220,61502215) 中国博士后基金(2020M672134)。
关键词 时间序列数据 小波包 正则化极限学习机 集成分类 权值优化 time series data wavelet packet regularized extreme learning machine ensemble classification weight optimization
  • 相关文献

参考文献5

二级参考文献70

  • 1车用太,王锜,黄积刚,宁挺文,丁培成,王安滨,王尤培,马志峰,鱼金子.矿震及其前兆初探[J].中国地震,1993,9(4):334-340. 被引量:13
  • 2何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858. 被引量:282
  • 3齐庆新,窦林名.冲击地压理论与技术[M].徐州:中国矿业大学出版社,2010.
  • 4Young R P, Talebi S, Hutchins D A. et al Analysis of mining-induced microseismic events at Strathcona Mine, Subdury, Canada [ J]. Pure and Applied Geophysics PAGEOPH, 1989,129:3-4.
  • 5Box G E P,Jenkins G M. Time series analysis,forecasting and control[ M]. HoldenDay Inc. , 1976.
  • 6Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[C]//Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms (FODO 1993). 1993:69-84.
  • 7Azzouzi M, Nabney I T. Analysing time series structure with Hidden Markov Models[C]//Proceedings of the IEEE Confe- rence on Neural Networks and Signal Processing. 1998:402-408.
  • 8Bagnall A, Janacek G J, Powell M. A likelihood ratio distance measure for the similarity between the fourier transform of time series[C]//Proceedings of the Advances in Knowledge Disco- very and Data Mining, 9th Pacific-Asia Conference (PAKDD2005). 2005:737 743.
  • 9Bagnall A, Davis I., Hills J, et al. Transformation based ensem- bles for time series elassification[C]//Proeeedings of the 2012 SIAM International Conference on Data Mining (SDM 2012). 2012:307 318.
  • 10Balakrishnan S, Madigan D. Decision trees for functional varia- bles[C] // Proceedings of the 2006 International Conference on Data Mining (ICDM 2006). 2006:798 802.

共引文献146

同被引文献68

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部