摘要
负荷预测在保障电网安全运行和提高经济效益方面均占有举足轻重的地位。高精度的负荷预测不仅需要依靠历史负荷数据,并且气象、电价等诸多因素也会对其产生不同程度的影响。为了综合考虑诸多因素造成的影响。首先,以遴选关键因素作为切入点,利用新英格兰地区实测数据集,使用递归特征消除(RFE)有效去除冗余的影响因素,得到与真实负荷相关性高的影响因素,从而构造新的输入负荷数据。然后,利用注意力机制(Attention)动态调整各因素所占权重的特点,提出引入Attention的长短期记忆(LSTM)网络预测模型实现电力负荷预测。试验结果显示,与经典的K近邻方法(KNN)、LSTM、支持向量回归(SVR)等单一算法以及RFE-LSTM等组合算法相比,所提出的RFE-LSTM-Attention方法可以有效地提取关键负荷因素并获得良好的预测性能。
Load forecasting plays a pivotal role in ensuring the safe operation of power grids and improving economic efficiency.High accuracy load forecasting not only relies on historical load data,but also depends on many factors such as weather and electricity prices.To comprehensively consider the multi-factor influence,the key factors are selected as the starting point,and the New England measured data set is used to effectively remove the redundant influencing factors using recursive feature elimination(RFE)to obtain the influencing factors with high correlation with the real load,to construct new input load data.Then,the attention mechanism(Attention)is used to dynamically adjust the weights of each factor.The long short-term memory network(LSTM)prediction model with Attention is proposed to realize the electric load prediction.The experimental results show that the proposed RFE-LSTM-Attention method can effectively extract key load factors and obtain good prediction performance compared with the classical K-nearest neighbor(KNN)method,LSTM,support vector regression(SVR)and other single algorithms as well as RFE-LSTM and other combined algorithms.
作者
胡欣
冯杰
徐先峰
王世鑫
HU Xin;FENG Jie;XU Xianfeng;WANG Shixin(College of Electronics and Control Engineering,Chang’an University,Xi’an 710064,China)
出处
《自动化仪表》
CAS
2022年第3期69-74,共6页
Process Automation Instrumentation
基金
陕西省重点研发计划基金资助项目(2021GY-098)
长安大学中央高校基本科研业务费专项基金资助项目(300102321504、300102321501、300102321503)
西安市智慧高速公路信息融合与控制重点实验室基金资助项目(ZD13CG46)。
关键词
负荷预测
高精度
多因素
特征选择
递归特征消除
注意力机制
长短期记忆网络
对比算法
Load prediction
High accuracy
Multi-factor
Feature selection
Recursive feature elimination
Attention mechanism
Long and short-term memory(LSTM)network
Comparison algorithm