期刊文献+

基于主导从属框架的变结构置信规则库多目标优化方法 被引量:1

Multi-objective optimization method of variable-structured belief rule base using dominant subordinate framework
原文传递
导出
摘要 置信规则库(belief rule base,BRB)是一种十分有效的非线性建模工具,当前BRB优化相关研究仅局限于单目标优化.为了解决BRB的多目标优化问题,尤其需要解决在优化BRB参数的同时对BRB的结构也进行优化的问题,即BRB在优化过程中将变结构,本文提出基于主导从属框架结构(dominant-subordinate framework)的置信规则库多目标(multi-objective)优化方法(DSM-BRB).在主导优化过程中,将采用多种群策略和冗余基因策略对不同规模的BRB进行协同优化,其中多种群策略确保每个种群中的个体长度相等,不同种群中的个体长度不等,冗余基因策略将冗余基因添加到基因数量较少的个体中以确保每个个体具有相同的长度,因此不同种群中的个体可以协同优化,并在进入适应度计算之前删除添加的冗余基因.在主导优化过程完成之后,采用多线程并行优化机制将不同种群分配至多个从属优化线程中,即在一个线程中仅对一个种群中的个体进行优化,多个线程同时进行并行优化以提高优化效率.最后本文以某石油管道泄漏检测问题作为示例验证本文提出方法的有效性. Belief rule base is a nonlinear modeling tool,but current optimization studies of belief rule base only are only limited to single-objective optimization.In this study,a multi-objective optimization approach of BRB is proposed where the parameters and the structure of BRB are optimized at the same time,specifically that the structure of BRB is optimized during the optimization process.In the proposed approach,a dominant-subordinate framework and two strategies are adopted,namely the multi-population strategy and redundant gene strategy.The multi-population strategy ensures that individuals in each population are of equal length,individuals in different populations vary in length.The redundant gen strategy denotes that every individual with insufficient gens are added redundant genes in order to ensure every individual have the same length so that individuals in different populations can be collaboratively optimized simultaneously.Before entering fitness calculation,BRB should delete redundant genes.The two strategies are both implemented in the dominant process.After completing the dominant process,different populations are allocated in different threads where each thread only hosts one population,which is the subordinate optimization process being implemented in a parallel fashion.A practical benchmark case of pipeline leak detection problem is studied to validate the effectiveness of the proposed method.
作者 常雷雷 徐晓滨 徐晓健 CHANG Leilei;XU Xiaobin;XU Xiaojian(School of Automation,Hangzhou Dianzi University,Hangzhou 310000,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2022年第2期514-526,共13页 Systems Engineering-Theory & Practice
基金 浙江省杰出青年基金(R21F030005) 浙江省重点研发计划(2021C03015) 国家卫生健康委员会科研基金(WKJ-ZJ-2038) 浙江省自然科学基金(LY21F030011)。
关键词 主导从属框架 变结构置信规则库 多目标 dominant subordinate framework variable-structured belief rule base multi-objective
  • 相关文献

参考文献2

二级参考文献25

  • 1Oberkampf W L,Helton J C,Joslyn C A,et al.Challenge problems:Uncertainty in system response given uncertain parameters[J].Reliability Engineering & System Safety,2004,85(1-3):11-19.
  • 2Helton J C,Oberkampf W L.Alternative representations of epistemic uncertainty[J].Reliability Engineering & System Safety,2004,85(1-3):1-10.
  • 3Yang J B,Singh M G.An evidential reasoning approach for multiple-attribute decision making with uncertainty[J].IEEE Transactions on Systems,Man,and Cybernetics,1994,24:1-18.
  • 4Yang J B.Rule and utility based evidential reasoning approach for multiple attribute decision analysis under uncertainty[J].European Journal of Operational Research,2001,131:31-61.
  • 5Yang J B,Liu J,Wang H W.Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J].IEEE Transactions on Systems,Man,and Cybernetics,2006,36:266-285.
  • 6Yang J B,Wong B Y H,Xu D L,et al.Integrated bank performance assessment and management planning using hybrid minimax reference point-DEA approach[J].European Journal of Operational Research,2010,207:1506-1518.
  • 7Wang Y M,Yang J B,Xu D L.Environmental impact assessment using the evidential reasoning approach[J].European Journal of Operational Research,2006,174:1885-1913.
  • 8Jiang J,Li X,Zhou Z J,et al.Weapon system capability assessment under uncertainty based on the evidential reasoning approach[J].Expert Systems with Applications,2011,38:13773-13784.
  • 9Yang J B,Liu J,Xu D L,et al.Optimization model for training belief-rule-based systems[J].IEEE Transactions on Systems,Man,and Cybernetics,2007,37:569-585.
  • 10Xu D L,Liu J,Yang J B,et al.Inference and learning methodology of belief-rule-based expert system for pipeline leak detection[J].Expert Systems with Applications,2007,32:103-113.

共引文献17

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部