期刊文献+

氟化五边形石墨烯的拉伸性能

Tensile Properties of Fluorinated Penta-Graphene
原文传递
导出
摘要 用分子动力学方法研究了以碳五元环为结构基元的氟化五边形石墨烯的拉伸性能和变形破坏机制,以及氟化率对其力学参数的影响。结果表明:氟化能改变五边形石墨烯的变形破坏机制。低氟化率的五边形石墨烯在拉伸载荷作用下发生从碳五元环到碳多元环的转变,而完全氟化的五边形石墨烯没有发生明显的碳环转变。随着氟化率的提高五边形石墨烯的杨氏模量、断裂应力和应变呈先减小后增大的趋势。低氟化率(<15%)的五边形石墨烯,其力学性能参数均随氟化率的提高明显降低。完全氟化能提高五边形石墨烯的杨氏模量(约为29.56%),并大幅度降低其断裂应变,而其断裂应力与五边形石墨烯相当。 The tensile mechanical properties and failure mechanism of fluorinated penta-graphene,as well as the effect of different ratio of fluorinated area on the mechanical property of fluorinated pentagraphene were studied by means of molecular dynamics simulations. The results show that fluorination can change the failure mechanism of penta-graphene. The penta-graphene with low ratio of fluorinated area undergoes structural transformation from pentagon to polygon by external load. However, the fully fluorinated penta-graphene does not undergo structural transformation under tension. The Young’s modulus, fracture stress and strain of penta-graphene decrease first and then increased with the increase of the ratio of fluorinated area. When the ratio of fluorinated area is low(<15%), the mechanical parameters are significantly reduced with rising ratio of fluorinated area. Fully fluorination can increase the Young’s modulus of penta-graphene by about 29.56%, and greatly reduce the fracture strain, while the fracture stress is equivalent to that of pristine penta-graphene. These results can provide a theoretical basis for effectively adjusting the mechanical properties of two-dimensional nanomaterials such as penta-graphene.
作者 孙艺 韩同伟 操淑敏 骆梦雨 SUN Yi;HAN Tongwei;CAO Shumin;LUO Mengyu(Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,China)
出处 《材料研究学报》 EI CAS CSCD 北大核心 2022年第2期147-151,共5页 Chinese Journal of Materials Research
基金 江苏省高等学校自然科学研究重大项目(17KJA130001) 高端装备关键结构健康管理国际联合研究中心开放课题(KFJJ20-02N)。
关键词 材料科学基础学科 氟化五边形石墨烯 分子动力学 氟化率 力学性能 ReaxFF反应力场 foundational discipline in materials science fluorinated penta-graphene molecular dynamics fluorination coverages mechanical properties ReaxFF reactive force-field
  • 相关文献

参考文献3

二级参考文献54

  • 1韩同伟 贺鹏飞 王健 等.单层石墨烯薄膜拉伸变形的分子动力学研究[J].新型碳材料,.
  • 2Lee W S, Lin C F. Impact properties and microstructure evolution of 304L stainless steel. Mat Sci Eng A, 2001, 308(1-2): 124-135.
  • 3Meyers M A. Dynamics Behavior of Materials. New York: John Wiley& Sons Inc, 1994.
  • 4Lu L, Li S X, Lu K. An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scripta Mater, 2001, 45(10): 1163- 1169.
  • 5Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Mater, 2006, 54(11): 1913-1918.
  • 6Wang Y M, Ma E. Temperature and strain rate effects on the strength and ductility of nanostructured copper. Appl Phys Lett, 2003, 83(15): 3165-3167.
  • 7Wang Y M, Ma E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mat Sci Eng A, 2004, 375(77): 46-52.
  • 8Liu Z L, You X C, Zhuang Z. A mesoscale investigation of strain rate effect on dynamic deformation of single-crystal copper. Int J Solids Struct, 2008, 45(13): 3674-3687.
  • 9Dalla Torre F, Van Swygenhoven H, Victoria M. Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater, 2002, 50(15): 3957-3970.
  • 10Schwaiger R, Moser B, Dao M, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater, 2003, 51(17): 5159-5172.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部