摘要
Burgers方程为Navier-Stokes方程组的简化形式,在计算数学和计算流体力学领域中有着广泛应用.本文设计了粘性Burgers方程的高阶精度半隐式加权紧致非线性格式(WCNS),并给出了稳定性分析.方程对流项和粘性项分别采用五阶精度WCNS格式和四阶中心差分格式计算.半离散系统采用三阶精度IMEX Runge-Kutta方法计算,对流项和粘性项分别进行显式和隐式处理.数值结果表明IMEX Runge-Kutta WCNS格式可达到三阶时间精度和五阶空间精度,比显式TVD Runge-Kutta WCNS格式计算效率高,且具有高分辨率的激波捕捉能力.
Burgers'equations are a simplified form of incompressible Navier-Stokes equations and have been widely used in computational mathematics and computational fluid dynamics.This paper designs a high-order semi-implicit weighted compact nonlinear scheme(WCNS)for viscous Burgers'equations and gives the stability analysis of the designed scheme.The fifth-order WCNS and the fourth-order central difference scheme are used for the spatial discretization of convective terms and viscous terms.The third-order IMEX Runge-Kutta scheme is used for the time discretization of the semi-discrete system and convective terms are treated explicitly,while viscosity terms are treated implicitly.Numerical results show that the IMEX Runge-Kutta WCNS can achieve third-order accuracy in time and fifth-order accuracy in space.This semi-implicit WCNS is better than the TVD Runge-Kutta WCNS in terms of computational efficiency and has high-resolution shock-capturing ability.
作者
陈勋
蒋艳群
陈琦
张旭
胡迎港
Chen Xun;Jiang Yanqun;Chen Qi;Zhang Xu;Hu Yinggang(Model and Algorithm Research Institute,Department of Mathematics,Southwest University of Science and Technology,Mianyang 621000,China;China Aerodynamics Research and Development Center,Mianyang 621000,China)
出处
《数值计算与计算机应用》
2022年第1期76-87,共12页
Journal on Numerical Methods and Computer Applications
基金
国家数值风洞工程项目(NNW2018-ZT4A08)
国家自然科学基金项目(11872323)资助。