期刊文献+

面向对象的PolSAR图像SVM分类 被引量:1

Object-oriented SVM classification of PolSAR image
下载PDF
导出
摘要 极化合成孔径雷达(PolSAR,polarimetric synthetic aperture radar)图像具有强相干斑噪声和大场景特点,为此提出一种面向对象的支持向量机(SVM, support vector machine)分类算法。算法首先通过超像素分割产生待分类对象,以此减少分类处理单元,同时实现特征滤波降噪;然后通过转换矩阵提取信息完备且具有简单统计描述的雷达散射截面积特征;最后,选择在小样本条件下仍具有较强学习能力和泛化能力的SVM分类器实现图像分类。用公开的实测San Francisco数据进行实验,实验结果表明:该算法相对于对比算法在准确率上提升约10%。 Polarimetric synthetic aperture radar(PolSAR) image is characterized with strong speckle noise and big scene.Therefore, an object-oriented support vector machine(SVM) classification algorithm was proposed. Firstly, the object to be classified is generated by superpixel segmentation, which reduces the classification unit and achieves noise reduction;Then, the radar cross section(RCS) features with complete information and simple statistical description are extracted by the conversion matrix;Finally, SVM classifier with strong learning ability and generalization ability is selected to realize image classification. Experiments are conducted with publicly measured San Francisco data, and the experimental results show that the accuracy of this algorithm is improved by 10% compared with the contrast algorithm.
作者 韩宾宾 韩萍 程争 HAN Binbin;HAN Ping;CHENG Zheng(College of Electronic Information and Automation,CAUC,Tianjin 300300,China;Engineering Techniques Training Center,CAUC,Tianjin 300300,China)
出处 《中国民航大学学报》 CAS 2022年第1期21-26,共6页 Journal of Civil Aviation University of China
基金 中央高校基本科研业务费专项(3122019046)。
关键词 极化合成孔径雷达(PolSAR) 面向对象 支持向量机(SVM) 超像素分割 polarimetric synthetic aperture radar(PolSAR) object-oriented support vector machine(SVM) superpixel segmentation
  • 相关文献

参考文献3

二级参考文献20

  • 1VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 2QI Zhi-xin, YEH A G O, LI Xia, et al. A novel algorithm for land use and land cover classification using RADAR-2 polarimetric SAR data[J]. Remote Sensing of Environment,2012,118(3) :21-39.
  • 3CLOUDE S R, POTTIER E. A review of target decomposition theo- rems in radar polarimetry[ J]. IEEE Trans on Geoscience and Re- mote Sensing,1996,34(2) :498-518.
  • 4HUYNEN J R. Phenomenological theory of radar targets[ D ]. Nether- lands : Technical University of Delft, 1970.
  • 5CLOUDE S R. Group theory and polarization algebra [ J ]. Optic, 1986,75( 1 ) :26-36.
  • 6KROGAGER E. A new decomposition of the radar target scattering matrix [ J ]. Electronics Letters, 1990,26 ( 18 ) : 1525-1526.
  • 7'] CAMERON W L, LEUNG L K. Feature motivated polarization scat- tering matrix decomposition [ C ]//Proc of IEEE International Radar Conference. 1990 : 549 - 557.
  • 8HUYNEN J R. Physical reality of radar target[ C]//Proc of SPIE ,vol 1748. 1992:86-96.
  • 9FREEMAN A, DURDEN S. A three-component scattering model for polarimetric SAR data [ J ]. IEEE Yrans on Geoscience and Re- mote Sensing,]998,36(3) :963-973.
  • 10CLOUDE S R, PO33"IER E. Radar target decomposition theorems [ J ]. Electronics Letters, 1985,21 ( 1 ) :22-24.

共引文献18

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部