期刊文献+

多次喷射柴油机实时预测模型参数映射关系辨识 被引量:3

Identification of Correlation Between Parameters in Real-Time Predictive Model for Multi-Injection Diesel Engine
下载PDF
导出
摘要 基于经验公式(EF)的参数间映射关系,笔者采用相同的数据和自变量集建立了基于人工神经网络(ANN)的参数间映射关系.分别搭建了EF和基于ANN的柴油机实时物理模型(EF模型和ANN模型),在稳态和瞬态测试循环(WHTC)瞬态工况对比了两种模型的预测性能,结果表明:相比EF模型,ANN模型在稳态工况下对MFB 50、最高燃烧压力(PFP)和平均有效压力(BMEP)的预测精度更好;但是在瞬态工况下,ANN模型预测精度出现明显恶化,低于EF模型.主要原因是模型中参数存在校准误差和不确定性,ANN模型相比EF模型具有更强的非线性拟合能力,但是对参数误差更加敏感.在快速原型设备上测试了两种模型的计算耗时,两种模型计算耗时相当,均约为350μs,满足燃烧过程实时控制的要求. The empirical function-based(EF-based)correlations between parameters in engine model were obtained in our previous work.In this work,using same data and variables set,artificial neural network-based(ANN-based)correlations were trained and generated.Then,EF-based and ANN-based physics engine model(EF-model and ANN-model)were respectively developed.Predictive performance of the two models under steady-state and world harmonized transient cycle(WHTC)transient operating conditions were verified.The results show that MFB 50,peak firing pressure(PFP)and brake mean effective pressure(BMEP)predictive precision of the ANN-model is better than those of the EF-model under steady operating conditions,but worse under WHTC transient operating conditions.This is mainly because parameter calibration error and parameter uncertainty generally exist in engine model,while the ANN-model is much more sensitive than the EF-model to data’s error and un-certainty even though it is powerful to capture nonlinear characteristics.The computing time of the two models were tested on the rapid prototyping equipment.Test result indicates that computing time of both models are at the same level of 350μs,which meets the computing time requirement for real-time control.
作者 胡松 王贺春 王银燕 张金羽 杨福源 Hu Song;Wang Hechun;Wang Yinyan;Zhang Jinyu;Yang Fuyuan(State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China;Department of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《内燃机学报》 EI CAS CSCD 北大核心 2022年第2期153-161,共9页 Transactions of Csice
基金 国家重点研发计划中美国际合作资助项目(2017YFE0102800).
关键词 柴油机 多次喷射 实时预测模型 人工神经网络 diesel engine multi-injection real-time predictive model artificial neural network(ANN)
  • 相关文献

参考文献3

二级参考文献27

  • 1魏名山,尹子明,马朝臣.高速柴油机二级可调增压系统的设计计算方法[J].内燃机工程,2006,27(6):11-14. 被引量:12
  • 2Grebe U D,Larsson P I,Wu 14 J. Comparison of charging sys tems for spark ignition engines[C]. Wiener: The 28th Interna tionales Wiener Motorensymposiun,,2007.
  • 3Winkler N, AngstrOm H. Simulations and measurements of a two-stage turbocharged heavy-duty diesel engine including EGR in transient operation[C]//SAE 2008-01 0539,2008.
  • 4Yokomura H,Kouketsu S,Kotooka S,et al. Transient EGR control for a turbocharged heavy duty diesel engine [C]//SAE 2004-01- 0120,2004.
  • 5Westin F,Burenius R. Measurement of interstage losses of a twostage turhocharger system in a turhocharger test rig[C]//SAE 2010 01 1221,2010.
  • 6Nilsson T, Froberg A, Aslund J. Optimal operation of a turbo charged diesel engine during transients[J]. SAE International Journal of Engines,2012,5(2) :521-578.
  • 7Kech J,Klotz H. Model-based sequential turbocharging optimi zation for series 8000 MT0/M90 engines[C]//SAg 2002-01- 0378,2002.
  • 8Benajes J, Lujan J,Serrano J. Predictive modelling study of the transient load response in a heavy-duty turbocharged diesel en- gine[C]//SAE 2000-01-0583,2000.
  • 9Brahma I, Sharp M, Frazier T. Empirical modeling of transient emissions and transient response for transient optimization [J]//SAE International Journal o1 Engines, 2009,2 (1) : 1433- 1443.
  • 10Smith L, Preston W, Dowd G, et al. Application of a firs* law heat balance method to a turhocharged automotive diesel engine [C]//SAE 2009 01-2744,2009.

共引文献14

同被引文献16

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部