摘要
为解决智能车间物料运输AGV小车调度问题,以AGV补料任务行走总距离最短为目标,结合路径选择及任务排序双重标准,提出双层编码方式;同时为避免染色体上的基因聚集到小的邻域内,提出一种改进的遗传算法,算法增加了多种变异过程,相较于传统遗传算法扩大了解的空间,防止局部最优解的产生。最后通过MATLAB对环境进行建模、仿真,并与基本遗传算法进行对比。实验结果表明:所提出的改进算法能高效且可靠地解决AGV在多任务目标情况下的路径规划问题。
In order to solve the AGV scheduling problem of material transportation in intelligent workshop,taking the shortest to⁃tal walking distance of AGV replenishment task as the goal,a double-layer coding mode was put forward combining the double stand⁃ards of path selection and task sequencing.At the same time,in order to avoid the clustering of genes on chromosomes in a small neighborhood,an improved genetic algorithm was proposed,which added a variety of mutation processes.Compared with the tradition⁃al genetic algorithm,it enlarged the understanding space and prevented the generation of local optimal solutions.Finally,the environ⁃ment was modeled and simulated by MATLAB,and compared with the basic genetic algorithm.The experimental results show that the improved algorithm can be used to efficiently and reliably solve the path planning problem of AGV under multi-task target.
作者
于佳乔
李岩
YU Jiaqiao;LI Yan(School of Electrical and Electronic Engineering,Changchun University of Technology,Changchun Jilin 130012,China)
出处
《机床与液压》
北大核心
2022年第5期16-20,共5页
Machine Tool & Hydraulics
基金
吉林省科技发展计划项目(20190302025GX)
吉林省科技发展计划项目(20180201105GX)。
关键词
AGV小车
智能车间
双层编码方式
遗传算法
路径规划
Automated guided vehicle
Intelligent workshop
Double-layer coding mode
Genetic algorithm
Path planning