期刊文献+

基于机器学习的光伏发电功率预测——以金华市为例 被引量:5

Photovoltaic power generation prediction based on machine learning-taking Jinhua City as an example
下载PDF
导出
摘要 不可再生能源的大量消耗,对新能源发电提出更高的要求。国家倡导大力发展新能源发电,且光伏发电在新能源中占有非常重要的位置,然而光伏发电功率不稳定,因此实时准确预测光伏发电功率对新能源消纳和存储具有非常重要的意义。当前存在很多光伏发电功率预测算法,大量研究揭示深度学习方法能更准确地预测光伏发电功率。收集了金华市3个光伏发电站每5分钟时间窗口的发电功率,并通过网络爬虫得到相应的天气数据,再采用机器学习算法对各类天气的光伏发电功率进行预测。研究结果揭示深度学习算法(如双向长短期循环神经网络Bi-LSTM)比传统机器学习算法更好,也更稳定,且晴天和多云天气比阴雨天预测得更准确。 The massive consumption of non-renewable energy puts forward higher requirements for new energy power generation.The country advocates vigorously developing new energy power generation,and photovoltaic power generation occupies a very important position.However,photovoltaic power generation is unstable,so real-time and accurate prediction of photovoltaic power generation is of great significance for new energy consumption and storage.At present,there are many prediction algorithms for photovoltaic power generation,and a large number of studies have revealed that deep learning methods can more accurately predict photovoltaic power generation.This paper collects the power generation of three photovoltaic power stations in Jinhua City and the data are obtained for every 5 minutes.Furthermore,we obtains corresponding weather data through web crawlers,and then uses machine learning algorithms to predict photovoltaic power generation in various weather.Prediction results reveal that deep learning algorithms(such as bidirectional LSTM)are better and more stable than traditional machine learning algorithms.In addition,we find that,comparing with overcast and rainy days,it is more accurate to predict photovoltaic power generation for sunny and cloudy days.
作者 张波 王晓晨 周旺 陈志华 王剑强 ZHANG Bo;WANG Xiaochen;ZHOU Wang;CHEN Zhihua;WANG Jianqiang(State Grid Jinhua Power Supply Company,Jinhua 321017,China)
出处 《技术与市场》 2022年第3期17-22,共6页 Technology and Market
基金 国家自然科学基金(6210022350) 浙江省哲学社会科学规划重点项目(22NDJC009Z)。
关键词 光伏发电预测 机器学习 深度学习 天气信息 photovoltaic power generation prediction machine learning deep learning weather information
  • 相关文献

参考文献5

二级参考文献89

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:77
  • 2陈德辉,薛纪善.数值天气预报业务模式现状与展望[J].气象学报,2004,62(5):623-633. 被引量:136
  • 3European Photovoltaic Industry Association. Global market outlook for photovoltaics 2014, 2018[R]. EPIA Report, 2014.
  • 4PVPS lEA. 2014 snapshot of global PV markets[R]. Report lEA PVPS T1-26, 2015.
  • 52014年光伏产业发展情况[EB/OL].[2015-02-15].http://www.nea.gov.cn/201502/15/c_133997454.htm.
  • 6GLASSLEY W, KLEISSL J, SHIU H, et al. Current state of the art in solar forecasting, final report: Appendix A California renewable energy forecasting, resource data and mapping[R]. California Institute for Energy and Environment, 2010.
  • 7PELLAND S, REMUND J, KLEISSL J, et al. Photovoltaic and solar forecasting: state of the art[R], lEA PVPS Task, 2013.
  • 8LONG H, ZHANG Z, SU Y. Analysis of daily solar power prediction with data-driven approaches [ J ]. Applied Energy, 2014, 126:29-37.
  • 9MARQUEZ R, COIMBRA C F M. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database [ J ]. Solar Energy, 2011, 85(5) : 746-756.
  • 10ALMONACID F, PEREZ-HIGUERAS P J, FERNANDEZ E F, et al. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator[J]. Energy Conversion and Management, 2014 (85) : 389-398.

共引文献306

同被引文献34

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部