期刊文献+

二维泊松方程基于离散正弦变换的高阶紧致差分方法

A High-order Compact Finite Difference Method Based on Discrete Sine Transform for the 2D Poisson Equation
下载PDF
导出
摘要 为了求解带有Dirichlet边界条件的二维泊松方程边值问题,提出了基于快速离散正弦变换的8阶精度的紧致差分格式。引入和推导了8阶精度的紧致差分格式,利用8阶紧致差分格式对泊松方程进行了离散,利用快速离散正弦方法求解离散后的线性系统。通过数值算例验证了该算法的精确性和有效性。 In order to solve the two-dimensional Poisson equation with Dirichlet boundary conditions,an eighth-order accurate compact difference scheme based on fast discrete sinusoidal transform is proposed.The eighth order compact difference scheme is introduced and derived.The Poisson equation is discretized by the eighth order compact difference scheme,and the discrete linear system is solved by the fast discrete sinusoidal method.The accuracy and effectiveness of the algorithm are verified by numerical examples.
作者 邹志涵 向远强 ZOU Zhihan;XIANG Yuanqiang(School of Mathematical Sciences,Guizhou Normal University,Guiyang 550025,China)
出处 《新乡学院学报》 2022年第3期8-12,共5页 Journal of Xinxiang University
基金 贵州省普通高等学校青年科技人才成长项目(0521022)。
关键词 泊松方程 紧致差分格式 快速离散正弦变换 高阶精度 poisson equation compact difference scheme fast discrete sine transform high-order accuracy
  • 相关文献

参考文献3

二级参考文献15

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部