期刊文献+

基于VDCNN和LSTM混合模型的入侵检测算法 被引量:2

Research on Intrusion Detection AlgorithmBased on VDCNN and LSTMHybrid Model
下载PDF
导出
摘要 为了提高入侵检测系统在复杂数据集下的分类性能,提出一种将超深度卷积网络(very deep convolutional neural networks,VDCNN)和长短时记忆网络(long short-term memory,LSTM)混合模型的入侵检测算法。本模型通过CICFlowMeter工具对CES-CIC-IDS2018数据集进行特征采集,并对采集到的特征进行清洗、转换等预处理;将处理好的数据分别传入VDCNN网络和LSTM网络中获取数据特征和关联特征;最后将两类特征传入融合层以实现在特定维度上的拼接,形成新的数据特征进行分类识别,得出检测结果。使用了多种对比方法进行验证,实验结果表明所提分类模型相较与其他模型有效提高了入侵检测识别的准确率。 A hybrid intrusion detection method of bybird VDCNN and LSTM models,is presented to increase the classification performance of the intrusion detection technology under complex data sets.The feature collection with the CICFlowMeter on the CES-CIC-IDS2018 data set is done with the model;the collected features are cleaned and converted and other pretreatments are made.Then the processed data are transmitted to VDCNN network and LSTM network respectively to obtain data features and association features.Finally,the two types of features are transmitted to the fusion layer to realize the splicing in specific dimensions,the newly formed features are used for classification and recognition.The detection results are obtained.Many kinds of comparison methods are used for validation.The experiment results show that the proposed classification models effectively improve the accuracy of intrusion detection and recognition rate compared with the other model.
作者 王竹 赵建新 张宏映 李亚军 冷丹 WANG Zhu;ZHAO Jian-xin;ZHANG Hong-ying;LI Ya-jun;LENG Dan(North Automatic Control Technology Institute,Taiyuan 030006,China)
出处 《火力与指挥控制》 CSCD 北大核心 2022年第2期170-175,共6页 Fire Control & Command Control
基金 中国兵器集团某网络安全科研基金项目。
关键词 VDCNN LSTM 入侵检测 CES-CIC-IDS2018 VDCNN LSTM intrusion detection CES-CIC-IDS2018
  • 相关文献

参考文献5

二级参考文献36

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2周晔,杨天奇.一种基于置信度的异常检测模型与设计[J].计算机仿真,2005,22(1):167-169. 被引量:6
  • 3许劲松,覃俊.一种基于支持向量机的入侵检测模型[J].计算机仿真,2005,22(5):43-45. 被引量:5
  • 4De D E nning.An Intrusion Detection Model[ J ].IEEE Trans on Software Engineering,1987,13(2):222 -232.
  • 5Robert E Schapire.The boosting approach to machine learning:An overview[ M ].In MSRI Workshop on Nonlinear Estimation and Classification,2002.
  • 6L K Hansen and P Salamon.Neural network ensembles[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,(12):993-1001.
  • 7Breiman L Bagging Predictors[J].Machine Learning,1996,24(2):123-140.
  • 8S R E chapire.The Strength of Weak Learnability[J].Machine Learning,1990,5(2):197-227.
  • 9Z Z H hou,et al.Genetic algorithm based selective neural network ensemble[ C].Proceedings the 17th International Joint Conference on Artificial Intelligence.Seattle,WA:[ s.n.],2001,(2):797-802.
  • 10L Didaci,G Giacinto and F Roli.Ensemble Learning for Intrusion Detection in Computer Networks[ C].Proc.of AI * IA,Workshop on "Apprendimento automatico:metodi e applicazioni",Siena,Italy,Sept 11,2002.

共引文献72

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部