期刊文献+

基于张量环分解的非精确的低秩填充算法

A Inexact Low Rank Tensor Completion Algorithm Based on Tensor Ring Decomposition
下载PDF
导出
摘要 文章提出一种基于张量环分解的低秩填充算法.利用张量核因子决定存储信息的2-模展开来代替控制结构的1-模和3-模展开.虽然每次迭代不是最优下降,但保证了整体下降.从而减少了计算花费,提高了张量填充效率.最后通过实验验证了新算法的可行性.在精度一致的情况下,文章算法较之前算法快了近3倍. Based on tensor ring(TR)decomposition,a inexact low rank tensor completion algorithm is proposed.By employing the mode-2 unfolding matrix of core tensors to represents mode-1 unfolding matrix and mode-3’s,it ensures the global descending rather than optimal descent every iteration.The computational cost is reduced and efficiency is improved by employing proposed method.Finally,the experiments on real-world datasets were conducted to evaluate the performance of algorithm.The simulation experiment shows that the proposed algorithm is about 3 times faster than traditional algorithm without almost loss of accuracy.
作者 孟翔宇 温瑞萍 MENG Xiangyu;WEN Ruiping(Key Laboratory for Engineering&Computing Science,Shanxi Provincial Department of Education,Jinzhong 030619,China;Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China)
出处 《太原师范学院学报(自然科学版)》 2022年第1期1-5,共5页 Journal of Taiyuan Normal University:Natural Science Edition
基金 国家自然科学基金(11371275) 山西省自然科学基金(201901D211423)。
关键词 张量填充 环分解 低秩 tensor completion tensor ring decomposition low rank
  • 相关文献

参考文献1

二级参考文献18

  • 1Okatani T, Deguchi K. On the Wiberg Algorithm for Matrix Factorization in the Presence of Missing Components. International Journal of Computer Vision, 2007, 72 (3) : 329 - 337.
  • 2Chen Pei. Optimization Algorithms on Subspaces: Revisiting Missing Data Problem in Low-Rank Matrix. International Journal of Computer Vision, 2008, 80(1) : 125 -142.
  • 3Korah T, Rasmussen C. Spatiotemporal Inpainting for Recovering Texture Maps of Occluded Building Facades. IEEE Trans on Image Processing, 2007, 16(9) : 2262 -2271.
  • 4Garcia-Laencina P J, Sancho-Gomez J L, Figueiras-Vidal A R, et al. K Nearest Neighbours with Mutual Information for Simultaneous Classification and Missing Data Imputation. Neurocomputing, 2009, 72(7/8/9) : 1483 - 1493.
  • 5Farhangfara A, Kurganb L, Dy J. Impact of Imputation of Missing Values on Classification Error for Discrete Data. Pattern Recognition, 2008, 41 (12) : 3692 - 3705.
  • 6Vidal R, Tron R , Hartley R. Muhiframe Motion Segmentation with Missing Data Using Power Factorization and GPCA. International Journal of Computer Vision, 2008, 79( 1 ) : 85 - 105.
  • 7Candes E J, Recht B. Exact Matrix Completion via Convex Optimization. Foundations of Computational Mathematics, 2009, 9 ( 6 ) : 717 -772.
  • 8Candes E J, Terence T. The Power of Convex Relaxation: Near-Optimal Matrix Completion. IEEE Trans on Information Theory, 2010, 56 ( 5 ) : 2053 - 2080.
  • 9Cai Jianfeng, Candes E J, Shen Zouwei. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM Journal on Optimization, 2010, 20(4) : 1956 - 1982.
  • 10Candes E J, Plan Y. Matrix Completion with Noise. Proc of the IEEE, 2010, 98(6) : 925 -936.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部