摘要
文章提出一种基于张量环分解的低秩填充算法.利用张量核因子决定存储信息的2-模展开来代替控制结构的1-模和3-模展开.虽然每次迭代不是最优下降,但保证了整体下降.从而减少了计算花费,提高了张量填充效率.最后通过实验验证了新算法的可行性.在精度一致的情况下,文章算法较之前算法快了近3倍.
Based on tensor ring(TR)decomposition,a inexact low rank tensor completion algorithm is proposed.By employing the mode-2 unfolding matrix of core tensors to represents mode-1 unfolding matrix and mode-3’s,it ensures the global descending rather than optimal descent every iteration.The computational cost is reduced and efficiency is improved by employing proposed method.Finally,the experiments on real-world datasets were conducted to evaluate the performance of algorithm.The simulation experiment shows that the proposed algorithm is about 3 times faster than traditional algorithm without almost loss of accuracy.
作者
孟翔宇
温瑞萍
MENG Xiangyu;WEN Ruiping(Key Laboratory for Engineering&Computing Science,Shanxi Provincial Department of Education,Jinzhong 030619,China;Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China)
出处
《太原师范学院学报(自然科学版)》
2022年第1期1-5,共5页
Journal of Taiyuan Normal University:Natural Science Edition
基金
国家自然科学基金(11371275)
山西省自然科学基金(201901D211423)。
关键词
张量填充
环分解
低秩
tensor completion
tensor ring decomposition
low rank