期刊文献+

涤纶石墨烯复合织物的等离子体增效及还原方法选择

Selection of plasma synergy and reduction methods for polyester graphene composite fabrics
下载PDF
导出
摘要 探讨常压喷射等离子体对涤纶热轧非织造布基材的处理条件,以及氧化石墨烯的还原方法对涤纶石墨烯复合织物性能的影响。通过正交试验对等离子体处理过程中的氮气流速、处理时间、处理高度进行优化;采用超声还原、抗坏血酸还原和连二亚硫酸钠还原法对涂覆有氧化石墨烯的涤纶织物进行还原,并对涤纶石墨烯复合织物的结构、形貌以及导电性能进行表征。结果表明:等离子体最优处理条件为氮气流速0.6 L/min,处理时间130 s,处理高度2 mm,等离子体处理可引入含氮基团并增加涤纶的比表面积,促进涤纶与氧化石墨烯的有效结合,从而提高复合织物的导电性能。3种还原方法中,抗坏血酸对氧化石墨烯的还原效果最优,其最佳还原时间为4.0 h。 The effect of treatment conditions of polyester calender nonwoven substrates by atmospheric pressure jet plasma and the reduction method of graphene oxide on the properties of polyester graphene composite fabrics were discussed.The nitrogen flow rate,treatment time and treatment height of the plasma treatment were optimized by orthogonal tests.The reduction of polyester fabrics coated with graphene oxide was carried out by ultrasonic reduction,ascorbic acid reduction and sodium bisulfite reduction.The structure,morphology and electrical conductivity of the polyester graphene composite fabrics were characterized.The results show that the optimal treatment conditions of atmospheric pressure jet plasma are nitrogen flow rate at 0.6 L/min,treatment time at 130 s,and treatment height at 2 mm.Plasma treatment can introduce nitrogen-containing groups and increase the specific surface area of polyester,which promoted the effective combination of polyester and graphene oxide and thus improved the electrical conductivity of the composite fabrics.Among the three reduction methods,ascorbic acid was the most effective for the reduction of graphene oxide,with an optimum reduction time of 4.0 h.
作者 田小龙 刘瑞 张志伟 潘高杰 马依拉·亚尔买买提 Tian Xiaolong;Liu Rui;Zhang Zhiwei;Pan Gaojie;Mayila Yaermaimaiti(Key Laboratory of Featured Textiles and Clean Dyeing and Finishing Technology,Xinjiang University,Urumqi 830046,China)
出处 《产业用纺织品》 2022年第2期47-51,共5页 Technical Textiles
基金 新疆大学大学生创新项目(S201910755055) 企业横向课题(202010140001)。
关键词 涤纶 石墨烯 复合织物 等离子体 还原方法 抗坏血酸 导电性能 polyester graphene composite fabric plasma reduction method ascorbic acid electrical conductivity
  • 相关文献

参考文献6

二级参考文献78

  • 1Novoselov K, Falko V, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490 (7419): 192-200.
  • 2Singh V, Joung D, Zhai L, et al. Graphene based materials: Past, present and future[J]. Progress in Materials Science, 2011, 56 (8): 1178-127l.
  • 3Bai S, Shen X. Graphene-inorganic nanocomposites[J]. RSC Advances, 2012, 2 (1): 64-98.
  • 4Kosynkin D, Higginbotham A, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458 (7240): 872-877.
  • 5Compton O, Nguyen S. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials[J].Small, 2010, 6 (6): 711-723.
  • 6Stankovich S, Dikin D, Dommett G, et al. Graphene-based composite materials[J]. Nature, 2006, 442 (7100): 282-286.
  • 7Yun J, Yeo J, Kim J, et al. Solution-processable reduced graphene oxide as a novel alternative to PEDOT: PSS hole transport layers for highly efficient and stable polymer solar cells[J].Adv. Mater., 2011, 23 (42): 4923-4928.
  • 8Park S, An J, Ports J, et al. Hydrazine-reduction of graphite- and graphene oxide[J]. Carbon, 2011, 49 (9): 3019-3023.
  • 9Pham V, Cuong T, Nguyen-Phan T, et al. One-step synthesis ofsuperior dispersion of chemically converted graphene in organic solvents[J]. Chem. Commun., 2010, 46 (24): 4375-4377.
  • 10Shin H, Kim K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J].Ad~zFunct. Mater., 2009, 19 (12): 1987-1992.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部