期刊文献+

基于多尺度CNN的光伏组件缺陷识别 被引量:8

PHOTOVOLTAIC MODULE DEFECT IDENTIFICATION BASED ON MULIT-SCALE CONVOLUTION NEURAL NETWORK
下载PDF
导出
摘要 为提高光伏组件缺陷分类精度与效率,提出一种改进的多尺度卷积神经网络模型(IMCNN)。该算法根据光伏组件缺陷特点,构建3个不同尺度端对端的卷积神经网络模型,同时为优化网络结构,在3个通道中均引入SE-Inception模块。首先由多通道卷积提取精密度不同的特征;再将这些特征进行融合,得到特征的增强表达;最后实现光伏组件的缺陷分类。由于光伏组件的缺陷样本较少,使用生成对抗网络生成一部分图像样本,达到有效进行数据增强的目的。实验结果表明,所提算法的Kappa系数较高,分类精度与效率均有明显提升。 In order to improve the accuracy and efficiency of photovoltaic module defect classification,an Improved Multi-scale Convolutional Neural Network(IMCNN) model is proposed. According to the defect characteristics of photovoltaic module,the algorithm constructs the end-to-end Convolutional Neural Network model of three channels with different scales. At the same time,in order to optimize the network structure,SE-Inception modules are introduced in all three channels. Firstly,multi-channel convolution is used to extract features with different fineness. Then these features are fused to obtain the enhanced expression of high-level features.Finally,the defect classification of photovoltaic module is realized. Due to the small number of defective samples of photovoltaic module,a part of the image samples is generated using the Generative Adversarial Networks to effectively expanding the dataset. The results show that the Kappa coefficient of the proposed algorithm is higher,and the identification accuracy and efficiency are significantly improved.
作者 周颖 叶红 王彤 常明新 Zhou Ying;Ye Hong;Wang Tong;Chang Mingxin(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300130,China;China Hebei Control Engineering Research Center,Tinajin 300130,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2022年第2期211-216,共6页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(60741307)。
关键词 光伏组件 缺陷识别 图像处理 卷积神经网络 生成对抗网络 photovoltaic modules defect identification picture processing convolutional neural networks generative adversarial networks
  • 相关文献

参考文献3

二级参考文献35

  • 1Tsai Du-Ming,Wu Shih-Chieh,Li Wei-Chen.Defect detection of solar cells in electroluminescence images using Fourier image reconstruction.Solar Energy Materials and Solar Cells,2012,99:250-262.
  • 2Tsai Du-Ming,Chang Chih-Chieh,Chao Shin-Min.Microcrack inspection in heterogeneously textured solar wafers using anisotropic diffusion.Image and Vision Computing,2010,28(3):491-501.
  • 3Chiou Yih-Chih,Liu Jian-Zong,Liang Yu-Teng.Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques.Sensor Review,2011,31 (2):154-165.
  • 4Fu Zhuang,Zhao Yang-Zheng,Liu Yang,et al.Solar cell crack inspection by image processing//Proceedings of the International Conference on Business of Electronic Product Reliability and Liability.Shanghai,China,2004:77-80.
  • 5Tsai Du-Ming,Luo Jie-Yu.Mean shift-based defect detection in multicrystalline solar wafer surfaces.IEEE Transactions on Industrial Informatics,2011,7(1):125-135.
  • 6Jean Jong-Hann,Chen Chia-Hong,Lin Hsiu-Li.Application of an image processing software tool to crack inspection of crystalline silicon solar cells//Proceedings of the 2011 International Conference on Machine Learning and Cybernetics.Guilin,China,2011:1666-1671.
  • 7Bastari Alessandro,Bruni Andrea,Cristalli Cristina.Classification of silicon solar cells using electroluminescence texture analysis//Proceedings of the 2010 IEEE International Symposium on Industrial Electronics.Bari,Italy,2010:1722-1727.
  • 8Fuyuki Takashi,Kitiyanan Athapol.Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence.Applied Physics A:Materials Science & Processing,2009,96(1):189-196.
  • 9陈敏铭.矩阵重建的算法与实现[硕士学位论文].中国科学院研究生院,北京,2010.
  • 10Wright John,Ganesh Arvind,Rao Shankar,et al.Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization//Proceedings of the Conference on Neural Information Processing Systems.Vancouver,Canada,2009:2080-2088.

共引文献46

同被引文献61

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部