期刊文献+

基于随机森林的物联网设备流量分类算法 被引量:8

Traffic classification algorithm of Internet of things devices based on random forest
下载PDF
导出
摘要 物联网(IoT)设备流量分类对网络资产管理有重要意义,基于流量统计的分类技术是当前研究热点。已有算法主要基于流信息建立特征向量,而对数据包信息利用较少。改进了基于随机森林的物联网设备流量分类算法,基于流信息和流数据包信息共同建立特征向量。实验结果表明:所提算法与其他算法相比,所提算法的平均分类准确率由56%提高到82%,平均召回率由47%提高到67%,平均F_(1)得分由0.43提高到0.74,混淆矩阵对比也有明显提升,因此具备更好的分类效果。 The traffic classification of Internet of things(IoT)devices is very important to the management of cyberspace assets.The classification technology based on statistical identification is a hot spot in current academic research.The previous algorithms were mainly based on the flow information to set up the feature vectors,but lesson the packet information.In this paper,we improve the traffic classification algorithm of IoT devices based on random forest.We set up the feature vectors with both the flow information and the flow's packet information.The experimental results show that,compared with previous algorithms,the classification accuracy of the proposed algorithm increases from 56%to 82%,the recall rate improves from 47%to 67%,the F_(1) score increases from 0.43 to 0.74,and the confusion matrix correlation is also significantly improved.As a result,the proposed algorithm has a better classification effect than previous ones.
作者 李锐光 段鹏宇 沈蒙 祝烈煌 LI Ruiguang;DUAN Pengyu;SHEN Meng;ZHU Liehuang(School of Cyberspace Science and Technology,Beijing Institute of Technology,Beijing 100081,China;National Computer Network Emergency Response Technical Team/Coordination Center of China,Beijing 100029,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第2期233-239,共7页 Journal of Beijing University of Aeronautics and Astronautics
关键词 物联网(IoT) 流量分类算法 随机森林 特征向量 流信息 数据包信息 Internet of things(IoT) traffic classification algorithm random forest feature vector flow information packet information
  • 相关文献

参考文献1

二级参考文献207

  • 1王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 2Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 3Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 4Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 5Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 6Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 7Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 8Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.
  • 9Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127.
  • 10Aggarwal J K, Ryoo M S. Human activity analysis: A review. ACM Computing Surveys, 2011, 43(3): 16.

共引文献401

同被引文献42

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部