摘要
传统TiO_(2)纳米材料具有较宽的带隙,仅能吸收紫外光且光生电子/空穴的快速重组导致其量子效率较低,因此极大地限制了TiO_(2)在能源和环境领域的应用。研究人员发现通过Ti;和氧空位的自掺杂可缩短TiO_(2)的禁带宽度,提高光生电子/空穴的分离效率,显著增强TiO_(2)的光电催化性能。自掺杂TiO_(2)纳米材料具有较强的光吸收能力和优良的电子性能,近年来在能源和环境领域受到广泛关注。综述了自掺杂TiO_(2)纳米材料在光催化、超级电容器、锂离子电池、染料敏化太阳能电池、电催化领域的应用现状,指出了目前自掺杂TiO_(2)纳米材料在应用过程中存在的问题,并对其发展前景进行了展望。
The traditional TiO_(2)nanomaterials have wide band gaps and can only absorb ultraviolet light, meantime the rapid reorganization of photogenerated carriers and holes lead to their low quantum efficiency.These factors greatly limits the application of TiO_(2)nanomaterials in the fields of energy and environment.Recent researches have indicated that self-doping of Ti;and oxygen vacancies can shorten the band gap of TiO_(2),and improve the separation efficiency of holes and electrons, which significantly enhance the photoelectric catalytic performance of TiO_(2).Since self-doped TiO_(2)has strong light absorption capacity and excellent electronic properties, it has been widely concerned in the field of energy and environmental.The application status of self-doped TiO_(2)nanomaterials in the fields of photocatalysis, supercapacitors, Li ion batteries, dye-sensitized solar cell and electrocatalysis were reviewed.The problems existing in the application of self-doped TiO_(2)nanomaterials were proposed, and prospected the development prospect.
作者
任家丰
陆晓赟
徐珂凡
田业超
张心怡
宋海欧
Ren Jiafeng;Lu Xiaoyun;Xu Kefan;Tian Yechao;Zhang Xinyi;Song Haiou(School of Environment,Nanjing Normal University,Nanjing 210023)
出处
《化工新型材料》
CAS
CSCD
北大核心
2022年第2期15-19,共5页
New Chemical Materials
基金
国家自然科学基金(51778281)
污染控制与资源化重点实验室基金(PCRRF19032,PCRRF18018)
南京师范大学基金(184080H202B146)
国家级大学生创新创业项目(201910319020)。