期刊文献+

High Performance of PVA Nanocomposite Reinforced by Janus-like Asymmetrically Oxidized Graphene:Synergetic Effect of H-bonding Interaction and Interfacial Crystallization 被引量:1

原文传递
导出
摘要 Macromolecule nanocrystal network and strong interfacial interaction are always beneficial to enhance the mechanical property of polymer-based nanocomposites.Poly(vinyl alcohol)(PVA),a typical biocompatible semicrystalline polymer,is an ideal candidate for preparing high performance polymer-based nanocomposites.However,the rich hydrogen bonds between PVA matrix and graphene oxide(GO)can disrupt the formation of PVA nanocrystal network.Thus,it remains a great challenge to achieve both strong and tough PVA-GO nanocomposites.Herein,by introducing a novel Janus-like amphiphilic graphene oxide(JGO),both hydrogen bonding and interfacial crystallization have been constructed between JGO sheets and PVA matrix.Benefiting from amphiphilic interfacial interaction and the enhanced crystal network,both PVA-JGO dried films and their swollen hydrogel films show superior mechanical properties than those of traditional PVA-GO nanocomposites.PVA-JGO dried films exhibit a 264%improvement of toughness at a JGO loading of 1 wt%.Meanwhile,the corresponding PVA-JGO swollen hydrogel films display simultaneous improvement of nearly 8 times increase of tensile strength and 20 times increase of toughness compared to traditional PVA-GO nanocomposite.This work indicates multiple interfacial interactions and macromolecule crystal networks can be concurrent in PVA nanocomposites by innovative modification of nanofillers,providing a new strategy to construct PVA nanocomposites with high strength and high toughness.The integration of outstanding mechanical and swelling resistance properties on PVA-JGO nanocomposite films render their promising applications,such as packaging and toughening hydrogel materials.
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第4期373-383,共11页 高分子科学(英文版)
基金 the National Natural Science Foundation of China(Nos.51773103 and 51603112) Taishan Mountain Scholar Foundation(Nos.TS20081120 and tshw20110510) State Key Laboratory of Bio-Fibers and EcoTextiles(Qingdao University)(No.K2019-09).
  • 相关文献

同被引文献88

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部