期刊文献+

具有脉冲效应和随机扰动的Markov跳跃主从多智能体系统固定时间一致

Fixed-Time Consensus Markovian Jumping Stochastic Leader-Following Multi-Agent Systems with Impulsive Effects
下载PDF
导出
摘要 本文研究了一类具有脉冲效应和随机扰动的Markov跳跃主从多智能体系统固定时间一致性问题.首先,提出了一种具有脉冲效应的切换状态反馈非线性控制协议,以实现多智能体系统达成一致;其次,通过利用随机分析理论,Lyapunov稳定性理论,得到了保证主从多智能体系统在固定时间内达到一致的充分条件;最后,数值算例验证了理论结果的正确性. This paper proposes a theoretical framework to study the fixed-time leader-following consensus problem for a class of Markovian jumping stochastic multi-agent systems(MASs). State feedback switching nonlinear control protocols with impulsive effects is presented to achieve the leader-following MASs consensus. And by employing stochastic analysis theory, Lyapunov stability theory, the sufficient criterion is derived to guaranteed fixed-time leader-following consensus. Moreover, the settling time is calculated as well. Finally, one example is provided to show the effectiveness of the theoretical analysis.
作者 夏孟瑶 蒋海军 于志永 XIA Mengyao;JIANG Haijun;YU Zhiyong(School of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830017,China)
出处 《新疆大学学报(自然科学版)(中英文)》 CAS 2022年第2期144-150,196,共8页 Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金 天山青年项目(2018Q068) 天山雪松项目(2018XS02)。
关键词 主从多智能体系统 一致性 脉冲效应 固定时间 leader-following multi-agent systems consensus impulsive effects fixed-time
  • 相关文献

参考文献2

二级参考文献6

  • 1VanDyke M C, Hall C D. Decentralized coordinated attitude control within a formation of spacecraft [ J]. Journal of Guidance , Control, and Dynamics, 2006, 29(5) :1101 -1109.
  • 2Chung S J, Ahsun U, Slotine J J E. Application of synchronization to formation flying spacecraft : lagrangian approach [ J]. Journal of Guidance, Control, and Dynamics, 2009, 32 (2):512-525.
  • 3Ren W. Distributed attitude alignment in spacecraft formation flying[ J]. International Journal of Adaptive Control and Signal Processing , 2007, 21:95 - 113.
  • 4Mehrabian A R, Tafazoli S, control of spacecraft formation decentralized approach [ C ]. Control Conference, Chicago, Khorasani K. Coordinated attitude without angular velocity feedback : a AIAA Guidance, Navigation, and August 10 - 13, 2009.
  • 5Khalil H K. Nonlinear systems [ M ]. New York: Prentice Hall, 2001:89 - 90,235 - 236.
  • 6吕建婷,曹喜滨,高岱.编队飞行卫星的自适应姿态协同控制[J].宇航学报,2009,30(4):1516-1520. 被引量:9

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部