摘要
本文研究了一类具有脉冲效应和随机扰动的Markov跳跃主从多智能体系统固定时间一致性问题.首先,提出了一种具有脉冲效应的切换状态反馈非线性控制协议,以实现多智能体系统达成一致;其次,通过利用随机分析理论,Lyapunov稳定性理论,得到了保证主从多智能体系统在固定时间内达到一致的充分条件;最后,数值算例验证了理论结果的正确性.
This paper proposes a theoretical framework to study the fixed-time leader-following consensus problem for a class of Markovian jumping stochastic multi-agent systems(MASs). State feedback switching nonlinear control protocols with impulsive effects is presented to achieve the leader-following MASs consensus. And by employing stochastic analysis theory, Lyapunov stability theory, the sufficient criterion is derived to guaranteed fixed-time leader-following consensus. Moreover, the settling time is calculated as well. Finally, one example is provided to show the effectiveness of the theoretical analysis.
作者
夏孟瑶
蒋海军
于志永
XIA Mengyao;JIANG Haijun;YU Zhiyong(School of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830017,China)
出处
《新疆大学学报(自然科学版)(中英文)》
CAS
2022年第2期144-150,196,共8页
Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金
天山青年项目(2018Q068)
天山雪松项目(2018XS02)。
关键词
主从多智能体系统
一致性
脉冲效应
固定时间
leader-following multi-agent systems
consensus
impulsive effects
fixed-time