期刊文献+

基于振动信号融合分析的电机偏心故障诊断 被引量:9

Fault Diagnosis of Motor Eccentricity Based on Vibration Signal Fusion Analysis
下载PDF
导出
摘要 为提高异步电机气隙偏心故障诊断的可靠性,提出一种基于振动信号融合分析的异步电机气隙偏心故障诊断方法。首先,采集不同偏心故障类型下的径向电磁力和不平衡磁拉力信号;其次,对信号进行融合相关分析,建立不同信号间的相关关系;最后,通过振动信号融合相关谱图可判断电机是否存在偏心故障及偏心故障的类型。该方法通过对故障特征信号的融合相关分析,能够突出故障特征频率分量,降低故障识别难度。通过仿真分析,验证了该方法的有效性和实用性,对于电机运行状态的准确监测具有重要意义。 Aiming to improve the reliability of the fault diagnosis of induction motor air gap eccentricity,this paper proposed a fault diagnosis method of induction motor air-gap eccentricity based on vibration signal fusion analysis.Firstly,the radial electromagnetic force and unbalanced magnetic pull signals under different types of eccentricity fault are collected.Then,the fusion correlation analysis of the signals is carried out to establish the correlation between different signals.Lastly,the eccentricity fault and the type of eccentricity fault can be judged by the vibration signal fusion correlation spectrum.Through the fusion correlation analysis of fault characteristic signals,this method can highlight the fault characteristic frequency components and reduce the difficulty of fault identification.Through simulation analysis,the effectiveness and practicability of the method are verified,and it is of great significance for the accurate monitoring of the motor running state.
作者 张雅晖 杨凯 徐百川 ZHANG Ya-hui;YANG Kai;XU Bai-chuan(State Key Laboratory of Advanced Electromagnetic Engineering and Technology,Ministry of Education,Huazhong University of Science and Technology,Wuhan 430074,China;Engineering Research Center of Novel Electrical Machines and Special Electromagnetic Equipments,Ministry of Education,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《组合机床与自动化加工技术》 北大核心 2022年第3期60-63,67,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家重点研发计划(2018YFB0904800) 国家自然科学基金资助项目(51677078)。
关键词 故障诊断 异步电机 气隙偏心 径向电磁力 不平衡磁拉力 信号融合 fault diagnosis induction motor air-gap eccentricity fault radial electromagnetic force unbalanced magnetic pull signal fusion
  • 相关文献

参考文献6

二级参考文献53

  • 1侯新国,吴正国,夏立,卜乐平.瞬时功率分解算法在感应电机定子故障诊断中的应用[J].中国电机工程学报,2005,25(5):110-115. 被引量:36
  • 2侯新国,吴正国,夏立,卜乐平.基于Park矢量模信号小波分解的感应电机轴承故障诊断方法[J].中国电机工程学报,2005,25(14):115-119. 被引量:30
  • 3罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 4Toliyiat H A. Condition monitoring and fault diagnosis of electrical machines-A review[C]. In conference record IEEE-IAS. Annual meeting, Phoenix, AZ, 1999, 1: 197-204.
  • 5Isermann R, Freyermuth B. Process fault diagnosis based on process model knowledge-Part I: Principles for fault diagnosis with parameter estimation[J]. Trans. ASME, 1991, 113(12): 620-626.
  • 6Thomson W T. On-line MCSA to diagnose shorted turns in low voltage stator windings of 3-phase induction motors prior to failure[C]. IEEE IEMDC'01, 2001: 891-898.
  • 7Tallam R M, Habetler T G, Gharly R. Neural network-based on-line stator winding turn fault detection motors[C]. Conference records of IEEE-IAS. Annualmeeting, 2000, 1: 375-380.
  • 8Penman J, Sedding H G, Lloyd B A et al. Detection and location of interturn short circuits in the stator windings of operating motors[J]. IEEE Trans. Energy Conversion, 1994, 9: 652-658.?A
  • 9FinleyWR, HodowanecMM, HolterWG. An analytical approach to solving motor vibration problems[J]. IEEE Transactions on Industry Applications, 2000, 36(5): 652-658.
  • 10张贤达.现代信号处理[M].北京:清华大学出版社,1994..

共引文献76

同被引文献94

引证文献9

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部