期刊文献+

基于遗传算法优化的Elman网络时滞补偿研究 被引量:1

Time Delay Compensation Employing Elman Network Optimized by Genetic Algorithm
下载PDF
导出
摘要 神经网络时滞补偿算法在时滞补偿方面一般应用于特定激励下固定时滞的补偿问题,适用范围有待进一步改善。针对主动质量阻尼器控制系统,考虑不同地震波和时滞的影响,本文提出了一种基于遗传算法(GA)优化的神经网络时滞补偿方法。该方法通过跟踪理想状态的结构响应,采用GA对Elman神经网络进行初始权重和阈值的优化训练,并与经典的移相法和泰勒一阶法的时滞补偿效果进行了对比分析。研究结果表明:理想状态下AMD可以显著减小结构的位移和加速度响应。在175 ms、225 ms和275 ms的大时滞情况下,结构位移峰值、层间位移角、加速度均值和峰值指标与理想状态的指标差值均分别在19.4%、15.5%和22%之内,适用于不同地震波和时滞下的结构主动控制。 Neural network time delay compensation algorithm is generally applied to fixed time delay compensation problems under specific excitation,and its application scope needs to be further improved.Considering the influence of different seismic waves and time delays,a neural network time-delay compensation method based on genetic algorithm(GA)optimization was proposed for active mass damper control system.By tracking the ideal structural response,the Elman neural network was trained with GA to optimize the initial weight and threshold,and the delay compensation effect was compared with the classical phase shift method and Taylor's first-order method.The results showed that AMD could significantly reduce the displacement and acceleration response of the structure under ideal conditions.In the case of 175 ms,225 ms and 275 ms,the difference of the peak displacement,interstory drift angle,mean acceleration and peak acceleration index were within 19.4%,15.5%and 22%,respectively,which are suitable for active structural control under different seismic waves and time delays.
作者 郑晓君 谭平 姚洪灿 ZHENG Xiao-jun;TAN Ping;YAO Hong-can(School of Civil Engineering,Guangzhou University,Guangzhou 511442;Key Laboratory of Earthquake Resistance Earthquake Mitigation and Structural Safety of the Ministry of Education,Guangzhou University,Guangzhou 510405)
出处 《广州建筑》 2022年第1期3-10,共8页 GUANGZHOU ARCHITECTURE
基金 国家重点研发计划项目(2019YFE0112500) 国家自然科学基金项目(51978185)。
关键词 主动质量阻尼器控制系统 时滞补偿 ELMAN神经网络 遗传算法 active mass damper control system delay compensation elman neural network genetic algorithm
  • 相关文献

参考文献7

二级参考文献54

  • 1姜永森,田军,杨慧中.双率时变系统遗忘因子最小二乘参数估计[J].清华大学学报(自然科学版),2008,48(S2):1723-1727. 被引量:2
  • 2张仁瑜.混凝土中钢筋电磁感应法检测技术[J].工业建筑,2006,36(6):81-82. 被引量:5
  • 3袁宇浩,张庆灵,陈兵.非线性广义系统时滞相关的模糊控制[J].自动化学报,2006,32(5):824-828. 被引量:6
  • 4席剑辉,魏茹,韩敏.EKF在多变量混沌序列辨识中的应用[J].系统仿真学报,2006,18(9):2525-2529. 被引量:4
  • 5JANG J S R radial basis , SUN C T. Functional equivalence between function networks and fuzzy inference systems [J]. IEEE Transactions on Neural Networks, 1993, 4(1) : 156 - 158.
  • 6CASTELLANO G, FANELIA A M, MENCAR C. A neuron-fuzzy network to generate human understandable knowledge from data [J]. Cognitive Systems Research, 2002, 3(2) : 125 - 144.
  • 7KORBICZ J, KOWAL M. Neural-fuzzy networks and their application to fault detection of dynamical systems[J]. Engineering Applications of Artificial Intelligence, 2007, 20(5): 609-617.
  • 8SHIEH H L, YANG Y K, CHANG P L, et al. Robust neural-fuzzy method for function approximation [J]. Expert Systems with Applications, 2009, 36(3): 6903-6913.
  • 9DING Feng, XIAO Yong song. A finite-data-window least squares algorithm with a forgetting factor for dynamical modeling [J ]. Applied Mathematics and Computation, 2007, 186(1): 184-192.
  • 10Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamic testing [J].Earthquake Engineering and Structural Dynamics,1992, 21: 79~92.

共引文献23

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部