期刊文献+

由正则理想确定的凝聚性研究 被引量:3

The Coherence Study Determined by Regular Ideals
下载PDF
导出
摘要 设R是交换环,M是R-模,T表示R的有限生成正则理想的集合.引入正则平坦模和正则余平坦模的概念,并利用正则平坦模和正则余平坦模刻画正则凝聚环,证明正则凝聚环刻画的Chase定理.特别地,证明Prüfer环是一类典型的正则凝聚环,证明R是Prüfer环当且仅当可除模是正则余平坦模,当且仅当正则余平坦模的商模是正则余平坦模. Let R be a commutative ring, M be a R-module and T be a set of finitely generated regular ideals of R. In this paper we introduce the concepts of regular flat modules and regular coflat modules, and characterize regular coherent rings by using regular coflat modules and regular flat modules. It is proved that the famous Chase’s theorem on regular coherent rings. In particular, it is shown that Prüfer rings are typical regular coherent rings. And it is proved that R is a Prüfer ring if and only if all divisible modules are regular coflat modules;if and only if factor modules of regular coflat modules are regular coflat modules.
作者 肖雪莲 王芳贵 林诗雨 XIAO Xuelian;WANG Fanggui;LIN Shiyu(School of Mathematical Sciences,Sichuan Normal University,Chengdu 610066,Sichuan;College of Mathematics,Aba Teachers University,Wenchuan 623002,Sichuan)
出处 《四川师范大学学报(自然科学版)》 CAS 2022年第1期33-40,共8页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11671283)。
关键词 正则内射模 正则余平坦模 正则平坦模 正则凝聚环 Prüfer环 regular injective modules regular coflat modules regular flat modules regular coherent rings Prüfer rings
  • 相关文献

参考文献7

二级参考文献39

  • 1Zariski O., Samuel P., Commutative Algebra, Vol. 2, Van Nostrand, Princeton, N.J., 1960.
  • 2Gilmer R., Multiplicative Ideal Theory, Marcel Dekker, INC., 1972.
  • 3Kaplansky I., Commutative Rings, Revised ed., Chicago: Univ. of Chicago Press, 1974.
  • 4Fontana M., Gabelli S., Houston E., UMT-domains and domains with Priifer integral closure, Comm. Algebra, 1998, 26: 1017-1039.
  • 5Sally J. D., Vasconcelos W. V., Flat ideals I, Comm. Algebra, 1975, 3: 531-543.
  • 6Glaz S., Vasconcelos W. V., Flat ideals Ⅱ, Manus Math., 1977, 22:325-341.
  • 7Rotman J. J., An Introduction to Homological Algebra, Academic Press, INC., 1979.
  • 8Fuchs L., Injective modules over Mori domains, Studia Saientiarum Mathematicarum Hungarica, 2003, 40: 33-40.
  • 9Kim H., Kim E. S., Park Y. S., Injective modules over strong Mori domains, Houston J. Math., 2008, 3,1: 349-360.
  • 10Wang M. Y., Zhao G., On maximal injectivity, Acta Mathematical Sinica, 2005, 21: 1451-1458.

共引文献9

同被引文献7

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部