摘要
目前对码重k=3,4,5,6时有一些结果,对码重k>7的最优冲突回避码具体构造取得的结果很少.利用数论二次剩余和欧拉函数的相关知识,进一步具体构造码重为k=8,9,10,11,12,码长为n=(k-1)p^(r),r为正整数时最优冲突回避码的一系列新结果.
Previously,some explicit constructions of optimal conflict-avoiding code with weight k=3,4,5,6,7are obtained.But there is very few results with weight k>7.In this paper,using Euler function and congruent numbers'properties in integer rings,a new infinite classes of optimal conflict-avoiding codes with weight k=8,9,10,11,12 and length n=(k-1)p^(r) are obtained,where r is a positive integer.
作者
黄必昌
HUANG Bichang(College of Mathematics and statistics,Baise University,Baise,Guangxi 533000,China)
出处
《闽南师范大学学报(自然科学版)》
2022年第1期16-20,共5页
Journal of Minnan Normal University:Natural Science
基金
广西自然科学基金项目(2018GXNSFAA281259)。
关键词
冲突回避码
二次剩余
欧拉函数
Conflict-avoiding code
quadratic residue
Euler functions