期刊文献+

基于平方根形式的无迹卡尔曼粒子滤波的电力系统动态估计 被引量:3

Dynamic Estimation of Power System Based on Power Unscented Kalman Particle Filter in Square Root Situation
下载PDF
导出
摘要 针对无迹卡尔曼滤波(UKF)和粒子滤波(PF)状态估计精度低的缺点,把平方根形式的无迹卡尔曼粒子滤波(SRUPF)引入到电力系统状态估计中。在该方法中,无迹卡尔曼滤波作为概率密度函数进行更新,利用Markov链蒙特卡罗方法解决重采样后粒子的匮乏问题,利用平方根形式解决状态估计的收敛速度和稳定性问题。在保障精度的情况下,为了不牺牲大量的计算时间,适当的减少了粒子个数。最后在IEEE14进行了仿真验证,仿真结果表明SR UPF的引入可以有效提高电力系统的动态估计精度。 In terms of the shortcomings of unscented Kalman filter(UKF) and particle filter(PF) state estimation, this paper introduces unscented Kalman particle filter in square root form(SR-UPF) into power system state estimation.In this method, the unscented Kalman filter is updated as a probability density function.Markov chain Monte Carlo method is used to solve the problem of particle shortage after resampling, and the square root form solves the problem of convergence speed and stability of state estimation.In the case of ensuring accuracy, in order not to sacrifice a large amount of calculation time, the number of particles is appropriately reduced.Finally, the simulations are verified in IEEE 14.The simulation results show that the introduction of SR-UPF can effectively improve the dynamic estimation accuracy of the power system without sacrificing a large amount of computation time.
作者 李明 王凯 李晓亮 刘治国 LI Ming;WANG Kai;LI Xiaoliang;LIU Zhiguo(State Grid Hebei Electric Power Corporation Guantao Power Supply Branch,handan057750,China)
出处 《河北电力技术》 2022年第1期49-54,共6页 Hebei Electric Power
关键词 电力系统 动态估计 粒子滤波 平方根形式 power system dynamic state estimation particle filter(PF) square root
  • 相关文献

参考文献4

二级参考文献52

  • 1李洁,钟彦儒.基于无轨迹卡尔曼滤波器的感应电机转速估计[J].系统仿真学报,2006,18(3):693-697. 被引量:8
  • 2Vander Merwe R, Wan E. The square-root unscented Kalman filter for state and parameter estimation[C]//Intemational Conference on Acoustics, Speech and Signal Processing. Salt Lake City, Utah: IEEE, 2001: 3461-3464.
  • 3Vander Merwe R, Wan E. Efficient-free Kalman filter for online learning[C]//European Symposium on Artificial Neutral Networks. Bruges, Belgium: IEEE, 2001: 205-210.
  • 4Lefebvre T, Bruyninckx H, de Schutter J. Comment on "a new method for the nonlinear transformation of means and covariances in filters and estimators" [and authors' reply][J]. IEEE Transactions on Automatic Control, 2002, 47(8): 1406-1409.
  • 5DebsA S, Larson R E. A dynamic estimator for tracking the state of a power system[J]. IEEE Transactions on Power Apparatus arid Systems, 1970, 89(7): 1670-1678.
  • 6Mandal J K, SinhaAK. Incorporating nonlinearities of measurement function in power system dynamic state estimation[J]. IEE Processing: Generation, Transmission, Distribution, 1995, 142(2): 289-296.
  • 7Lin J M, Huang S J. Application of sliding surface- enhanced fuzzy control for dynamic state estimation of a power system[J]. IEEE Transactions on Power Systems, 2003, 18(2): 570-577.
  • 8Shih K R, Huang S J. Application of a robust algorithm for dynamic state estimation of a power system[J]. IEEE Transactions on Power Systems, 2002, 17(1): 141-147.
  • 9Sinha A K, Mandal J K. Dynamic state estimation using ANN based bus load prediction[J]. IEEE Transactions on Power Systems, 1999, 14(11): 1219-1225.
  • 10Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems[C]//Proceedings of the American Control Conference. Seattle, Washington: IEEE, 1995(3): 1628-1632.

共引文献102

同被引文献48

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部