期刊文献+

基于门控循环神经网络的网络时延预测模型 被引量:3

A Network Latency Prediction Model Based on Gated Recurrent Neural Network
下载PDF
导出
摘要 在信息中心网络ICN与5G融合的新型网络架构下,现场增强名字解析系统通过确定性时延名字解析服务来应对工业物联网IIoT等新应用对确定时延的挑战,其节点结构划分和维护需要测量节点间的时延。精确的网络时延预测可以减少测量代价,比简单移动平均方案更好地应对网络时延的变化。本文设计并实现了一种基于门控循环神经网络的网络时延预测模型,并基于亚马逊公司异地机房之间的真实时延数据进行了验证。实验结果表明,所提模型的预测精度比传统模型平均提高了20%以上,能够在业务场景中得到应用。 Under the new network architecture of ICN and 5G,the on-site enhanced name resolution system responds to the deterministic latency requirements from new applications such as Industrial Internet of Things(IIoT)through deterministic latency name resolution services.The division and maintenance of its node structure require latency measurements between nodes.Accurate network latency prediction can reduce the measurement cost and better respond to the changes in network latency than simple moving average solutions.This paper designs and implements a network latency prediction model based on gated recurrent neural network,and verifies it based on real latency dataset between Amazon’s remote computer rooms.The experimental results show that the prediction accuracy of the proposed model is improved by more than 20%on average compared with the traditional model,and it can be applied in business scenarios.
作者 吴上 邓浩江 盛益强 WU Shang;DENG Haojiang;SHENG Yiqiang(National Network New Media Engineering Research Center,Institute of Acoustics,Chinese Academy of Sciences,Beijing,100190,China;University of Chinese Academy of Sciences,Beijing,100049,China)
出处 《网络新媒体技术》 2021年第6期29-37,共9页 Network New Media Technology
基金 中国科学院先导专项课题:SEANET技术标准化研究与系统研制(课题号:XDC02070100)。
关键词 名字解析系统 信息中心网络 时延预测 name resolution system information centric networking latency prediction
  • 相关文献

参考文献11

二级参考文献52

  • 1刘攀,郭生练,田向荣,张洪刚.基于贝叶斯理论的水文频率线型选择与综合[J].武汉大学学报(工学版),2005,38(5):36-40. 被引量:18
  • 2Li M J,Yu X M,Ryu K H.MapReduce-based web mining for prediction of web-user navigation[J].Journal of Information Science,2014,40(5):557-567.
  • 3Torres S D,Hiemstra D.Analysis of search and browsing behavior of young users on the web[J].ACM Transactions on the Web,2014,8(2):1-54.
  • 4Jespersen S,Pedersen T B,Thorhauge J.Evaluating the Markov assumption for web usage mining[C]// Proc of the 5th ACM International Workshop on Web Information and Data Management.New York:ACM,2003:82-89.
  • 5Dhyani D,Bhowmick S S,Ng W K.Modelling and predicting web page accesses using Markov processes[C]// Proc of the 14th International Workshop on Database and Expert Systems Applications.Piscataway:IEEE,2003:332-336.
  • 6Awad M A,Khalil I.Prediction of user’s web-browsing behavior[J].IEEE Transactions on Systems,Man,and Cybernetics,2012,42(4):1131-1142.
  • 7Jorgensen Z,Yu T.A popularity-based prediction model for web prefetching[J].IEEE Computer,2003,36(3):63-70.
  • 8Liu N,Yang C C.Extracting a website’s content structure from its link structure[C] // Proc of the 14th ACM International Conference on Information and Knowledge Management.New York:ACM,2005:345-346.
  • 9The Internet Traffic Archive.2008-04-09. http ://ita. ee.lbl. gov/.
  • 10梁忠民,李彬权,余钟波,华家鹏,刘金涛.基于贝叶斯理论的TOPMODEL参数不确定性分析[J].河海大学学报(自然科学版),2009,37(2):129-132. 被引量:10

共引文献109

同被引文献9

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部