摘要
提出了一种新的面向大规模网络的深度学习(DL)辅助控制平面(CP)系统DeepMDR,用于实现多域分组网络中可伸缩的、独立于协议的路径计算。我们基于ONOS平台开发了DeepMDR,并扩展该系统以支持协议无感知转发(POF),简化多域CP操作的层次结构,设计并实现了一个DL模型进行域内快速高质量的路径计算。文章通过数值仿真和实验验证了该系统的可行性和有效性。
In this paper,we propose a new deep learning(DL)assisted control plane(CP)system for large scale network,called DeepMDR,which realizes scalable and protocol-independent path computation in multi-domain packet networks.We develop DeepMDR based on ONOS,extend it to support protocol-oblivious forwarding(POF)and facilitate the hierarchical architecture for multi-domain CP operations,and design and implement a DL model to achieve fast and high-quality path computation in each domain.Both numerical simulations and experiments are performed to verify the effectiveness and feasibility of our proposal.
作者
潘小琴
胡道允
朱祖勍
PAN Xiaoqin;HU Daoyun;ZHU Zuqing(Engineering Technology Center,Southwest University of Science and Technology,Mianyang,621010,China;School of Information Science and Technology,University of Science and Technology of China,Hefei,230027,China;ZTE Corporation,Nanjing,210000,China)
出处
《网络新媒体技术》
2021年第6期38-45,共8页
Network New Media Technology
基金
中兴通讯公司预研项目,基于深度学习的网络资源分配算法,(项目编号:PA-HQ-20190925001J-1)
国家自然科学基金面上项目,面向数据中心网络的知识定义资源管控体系研究(项目编号:61871357)。
关键词
深度学习
软件定义网络
多域网络
网络自动化
Deep learning(DL)
Software-defined networking(SDN)
Multi-domain networks
Network automation