期刊文献+

基于局部上下文和GCN的方面级情感分类模型 被引量:1

Aspect-level sentiment classification model based on local context and GCN
下载PDF
导出
摘要 对于方面级情感分析,目前的深度学习方法未能充分利用方面词的相近上下文中隐含的情感信息,基于此,提出一种基于局部上下文和门控卷积网络(gated convolutional network,GCN)的方面级情感分类模型。利用对上下文特征动态加权的方法捕捉与方面语义相关的局部上下文;采用门控卷积网络获取与方面相关的情感特征;通过多头自注意力机制捕捉句子内部的语义关联;使用Softmax识别出最终的情感极性。实验结果表明,该模型具有良好的情感分类性能,较已有的情感分类模型准确率和F_(1)值更高,能更好地掌握用户评论的情感倾向。 For aspect-based sentiment analysis,current deep learning methods fail to make full use of the sentiment information implied in the close context of aspect words.Given this problem,a new aspect-level sentiment classification model based on local context and the gated convolutional network was proposed.The dynamic weighting of context features was used to capture local context related to aspect semantics.The gated convolutional network was used to obtain the aspect-related emotional features.The semantic associations within sentences were captured by the multi-head self-attention mechanism.The final emotional polarity was identified by using Softmax.Experimental results show that this model has better classification performance,higher accuracy,and F_(1) value compared with the existing sentiment classification model,and can better grasp the emotional orientation of user comments.
作者 郑阳雨 蒋洪伟 ZHENG Yangyu;JIANG Hongwei(School of Information Management,Beijing Information Science&Technology University,Beijing 100192,China)
出处 《北京信息科技大学学报(自然科学版)》 2022年第1期76-81,共6页 Journal of Beijing Information Science and Technology University
关键词 方面级情感分析 自注意力机制 门控卷积网络 BERT 局部上下文 aspect-level sentiment analysis self-attention mechanism gated convolutional network bidirectional encoder representations from transformers(BERT) local context
  • 相关文献

参考文献3

二级参考文献28

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2A Das,S Bandyopadhyay.Dr Sentiment knows everything![C]//Proceedings of the ACL-HLT,2011:50-55.
  • 3A Joshi,A Balamurali,P Bhattacharyya,et al.C-feel-it:A sentiment analyzer for micro-blogs[C]//Proceedings of the ACL-HLT,2011 :127-132.
  • 4P Chesley,B Vincent,L Xu,et al.Using verbs and adjectives to automatically classify blog sentiment[J] .Training,2006,580(263).
  • 5L Jiang,M Yu,M Zhou,et al.Target -dependent twitter sentiment classification[C]//Proceedings of ACL-HLT,2011:151-160.
  • 6S Prasad.Micro-blogging Sentiment Analysis Using Bayesian Classification Methods[N].Technical Report,Stanford University,2010,Available at http://www-nlp.stanford.edu/courses/.
  • 7Y Lu,M Castellanos,U Dayal,et al.Automatic construction of a context-aware sentiment lexicon:an optimization approach[C]//Proceedings of the 20th international conference on World wide web,2011:347-356.
  • 8P D Turney.Thumbs up or thumbs down?:semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics,2002 :417-424.
  • 9B Pang,L Lee,S Vaithyanathan.Thumbs up?:sentiment classification using machine learning techniques[C]//Proceedings of EMNLP,2002:79-86.
  • 10T Mullen,N Collier.Sentiment Analysis using Support Vector Machines with Diverse Information Sources[C]//Proceedings of EMNLP,2004:412-418.

共引文献162

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部