期刊文献+

基于轨迹数据的道路交叉口及其结构提取方法 被引量:2

Road intersections and structure extraction method based on trajectory data
原文传递
导出
摘要 针对轨迹大数据自动提取城市道路,特别是交叉口问题,该文提出一种新的基于出租车轨迹数据的道路交叉口识别及其结构提取方法:识别轨迹中的转弯片段及其中心点;利用中心点周围轨迹的面积自适应确定聚类半径,并借助自适应聚类半径的DBSCAN方法识别可能的交叉口;对交叉口的轨迹数据进行清洗,用公共子轨迹相似性和角度相似性对转弯片段聚类;利用聚类簇删除非交叉口并提取道路交叉口中心线,获得详细的道路交叉口结构。以北京市出租车轨迹数据为实验数据,不仅识别出了相距较近的道路交叉口,也识别出了复杂的道路交叉口,并且得到了道路交叉口的详细结构。实验结果表明本文所提方法是可行的。 Automatic extraction of urban roads,especially intersections,based on big trajectory data has become a research hotspot.In this paper,a new method of road intersections detection and structure extraction based on taxi trajectory data is proposed.Firstly,the turning segments and their center points are identified.Secondly,the area of the trajectory around the center point is used to determine the cluster radius adaptively,and the DBSCAN method of the adaptive clustering radius is used to recognize possible intersections.Then,the trajectory data cleaning of the intersections is done,the turning segments are clustered by common sub-trajectory similarity and angle similarity.Finally,the clustering clusters are used to delete the non-intersection and extract the central lines of the road intersection to obtain detailed structures of road intersections.Taking Beijing taxi trajectory data as experimental data,not only the near road intersections,but also the complex road intersections were identified,and the detailed structure of the road intersections was obtained.These experimental results show that the proposed method is feasible.
作者 王飞 郭庆胜 徐杏琳 WANG Fei;GUO Qingsheng;XU Xinglin(School of Resources and Environment Science,Wuhan University,Wuhan 430079,China)
出处 《测绘科学》 CSCD 北大核心 2022年第1期212-218,244,共8页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41871378)。
关键词 轨迹 复杂道路交叉口 自适应 空间聚类 相似性 trajectory complex road intersection adaptive spatial clustering similarity
  • 相关文献

参考文献6

二级参考文献60

  • 1张睿,张继贤,李海涛.基于角度纹理特征及剖面匹配的高分辨率遥感影像带状道路半自动提取[J].遥感学报,2008,12(2):224-232. 被引量:26
  • 2Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 3Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 4Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.
  • 5Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84.
  • 6Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105.
  • 7Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340.
  • 8Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153.
  • 9Yu C, Ooi BC, Tan K-L, Jagadish HV. Indexing the distance: an efficient method to KNN processing. In: Apers PMG, Atzeni P,Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 421--430.
  • 10朱庆,李渊.面向实际车道的3维道路网络模型[J].测绘学报,2007,36(4):414-420. 被引量:10

共引文献165

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部