期刊文献+

基于改进人工蜂群动态规划的厂级负荷优化分配 被引量:7

Plant-level load optimal distribution based on improved artificial bee colony dynamic programming
下载PDF
导出
摘要 针对大规模变负荷条件下燃煤机组负荷优化问题,考虑厂级负荷优化分配的全局性及实时响应需求,提出一种利用改进人工蜂群算法,在离线状态下建立全负荷区间满足动态规划算法需要的顺序优化表,进而利用动态规划中逆序分配的方法实现在线优化分配的算法。该算法能有效完成全负荷区间的负荷优化分配计算,同时降低优化分配的计算复杂性。实例计算表明,在一定的机组负荷步长下,利用改进人工蜂群算法进行离线造表能够减少造表时间,构造的优化顺序表可有效应用于机组实时在线优化,提高机组在不同负荷下运行的经济性。 Aiming at solving the problem of load optimization for coal-fired thermal power units under large-scale variable load conditions, and considering the global optimization and real-time response requirements of plant-level load optimal allocation, an improved artificial bee colony algorithm is proposed. The algorithm establishes a sequence optimization table for full load interval to meet the needs of dynamic programming algorithm in the offline state, and then realizes online optimal allocation algorithm realized by using the inverse sequence allocation method in dynamic programming. This improved algorithm can effectively complete the load optimal allocation calculation in full load range, and reduce the computational complexity of optimal allocation at the same time. The example shows that, under a certain unit load step, using the improved artificial bee colony algorithm for off-line tabulation can reduce the time required for tabulation. The constructed optimization sequence table can be effectively used for real-time online optimization of the unit, thus to improve the economy of the unit at different loads.
作者 李东麟 朱建宏 王华广 胡荣远 叶佳威 王培红 LI Donglin;ZHU Jianhong;WANG Huaguang;HU Rongyuan;YE Jiawei;WANG Peihong(Guizhou Qianxi Zhongshui Power Generation Co.,Ltd.,Qianxi 551500,China;State Nuclear Electric Power Planning Design&Research Institute Co.,Ltd.,Beijing 100095,China;School of Energy and Environment,Southeast University,Nanjing 210096,China)
出处 《热力发电》 CAS CSCD 北大核心 2022年第3期153-158,共6页 Thermal Power Generation
基金 国家自然科学基金项目(51976032,51876035)。
关键词 人工蜂群算法 负荷优化分配 动态规划 优化顺序表 煤耗量 经济性 artificial bee colony algorithm optimal load distribution dynamic programming optimization sequence table coal consumption economy
  • 相关文献

参考文献18

二级参考文献173

共引文献299

同被引文献93

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部