摘要
Membrane separation is a high-efficiency,energy-saving,and environment-friendly separation technology.Covalent organic framework(COF)-based mixed-matrix membranes(MMMs)have broad application prospects in gas separation and are expected to provide new solutions for coal-bed methane purification.Herein,a high-throughput screening method is used to calculate and evaluate COF-based MMMs for CH_(4)/N_(2) separation.General design rules are proposed from thermodynamic and kinetic points of view using the computation-ready,experimental COFs.From our database containing 471,671 generated COFs,5 COF membrane materials were screened with excellent membrane selectivities,which were then used as the filler of MMMs for separation performance evaluation.Among them,BAR-NAP-Benzene_CF_(3) combined with polydimethylsiloxane and styrene-b-butadiene-b-styrene show high CH_(4) permeability of 4.43×10^(-13) mol·m·s^(-1)·Pa^(-1)·m^(-2) and high CH_(4)/N_(2) selectivity of 9.54,respectively.The obtained results may provide reasonable information for the design of COF-based membranes for the efficient separation of CH_(4)/N_(2).
基金
financially supported by the National Key Research & Development Program of China (2021YFB3802200)
the National Natural Science Foundation of China (Nos. 22078004 and 21978005)