摘要
针对传统物流管理系统存在数据更新缓慢、客户服务薄弱以及对物流历史数据利用率不足、无法深入分析等问题,文中研究与设计了一种基于数据挖掘的物流信息监控系统。该系统根据管理人员的具体需求从数据库中提取相应的数据,经过清洗、集成和数据挖掘等步骤,完成对选用数据集的建模,进而实现数据的关联性分析及预测。将结果以可视化的形式反馈给管理人员。三项试验测试结果验证了所设计系统的可行性,该系统对于相关物流数据的预测分析结果误差低于2%,达到了预期的设计要求。
Aiming at the problems of slow data update,weak customer service,insufficient utilization of historical logistics data and in-depth analysis in traditional logistics management systems,this paper studies and designs a logistics information monitoring system based on data mining.The system extracts corresponding data from the database according to the specific needs of managers.After cleaning,integration,and data mining,it completes the modeling of the selected data set,and then realizes the correlation analysis and prediction of the data.The results are feedback to managers in visual form.The results of the three tests verified the feasibility of the designed system.The error of the system’s prediction and analysis of the relevant logistics data was less than 2%,which met the expected design requirements.
作者
王红艳
李选芒
WANG Hongyan;LI Xuanmang(Shaanxi Polytechnic Institute,Xianyang 712000,China)
出处
《电子设计工程》
2022年第6期71-75,共5页
Electronic Design Engineering
基金
陕西高等教育教学改革研究重点攻关课题(17GG002)。