期刊文献+

商用车侧翻的灰色-马尔科夫链预测方法研究 被引量:3

Research on Grey-Markov Chain Prediction Method of Commercial Vehicle Rollover
下载PDF
导出
摘要 为精确评价商用车侧翻危险程度和补偿气压制动系统的气压建立时延,提出一种商用车侧翻的灰色-马尔科夫链预测方法。首先,建立灰色预测模型并在不同预测时间下进行仿真测试;然后,针对灰色模型预测精度不足的问题,采用马尔科夫链理论进一步优化,并同时探究基于残差划分的状态数量对预测结果的影响,仿真结果表明,在状态数量为11个的情况下,预测最大误差已降至5.9%左右;最后,将电子控制单元(ECU)接入IPG/TruckMaker硬件在环试验台进行验证,结果表明,ECU在车辆侧翻前0.555 s输出预警信号,说明该预测方法有效。 In order to accurately evaluate the risk of commercial vehicle rollover and compensate for the air pressure establishment time delay of the pneumatic braking system,the paper proposes a gray-Markov chain prediction method for commercial vehicle rollover.Firstly,a gray prediction model is established to simulate at different prediction times;then,for the problem of insufficient prediction accuracy of the gray model,Markov chain theory is used for further optimization,and at the same time,the influence of the number of states on the prediction results is explored based on the residual division.The simulation results show that,when the number of states is 11,the maximum prediction error has been reduced to about5.9%;finally,the ECU is connected to the IPG/TruckMaker Hardware-In-the-Loop test bed for verification.The results show that the ECU outputs an early warning signal 0.555 s before the vehicle rolls over,indicating that the prediction method is effective.
作者 辜志强 王朝阳 Gu Zhiqiang;Wang Chaoyang(Wuhan University of Technology,Wuhan 430070)
机构地区 武汉理工大学
出处 《汽车技术》 CSCD 北大核心 2022年第3期42-48,共7页 Automobile Technology
基金 国家自然科学基金青年基金项目(51305313)。
关键词 气压制动时延 灰色模型 马尔科夫链理论 硬件在环 Air brake delay Gray model Markov chain theory Hardware-In-the-Loop
  • 相关文献

参考文献10

二级参考文献103

  • 1贺辉,宋大凤,杨南南,雷雨春,曾小华,聂利卫,王继新.轮毂马达液驱系统控制与仿真[J].吉林大学学报(工学版),2012,42(S1):27-31. 被引量:10
  • 2邵瓅群,赵文英.我国鲜切花物流发展问题的探讨[J].西部林业科学,2004,33(4):90-92. 被引量:14
  • 3柳新民,刘冠军,邱静.基于HMM-SVM的故障诊断模型及应用[J].仪器仪表学报,2006,27(1):45-48. 被引量:20
  • 4张继权,冈田宪夫,多多纳裕一.综合自然灾害风险管理——全面整合的模式与中国的战略选择[J].自然灾害学报,2006,15(1):29-37. 被引量:175
  • 5Farmer C M,Lund A K.Rollover risk of cars and light trucks af-ter accounting for driver and environmental factors[J].AccidentAnalysis and Prevention,2002,34(2):163-173.
  • 6Minderhoud M M,Bovy P H L.Extended time-to-collision meas-ures for road traffic safety assessment[J].Accident Analysis andPrevention,2001,33(1):89-97.
  • 7Winsum W,Brookhuis K A,Waard D.A comparison of differentways to approximate time-to-line crossing(TLC)during car driv-ing[J].Accident Analysis&Prevention,2000,32(1):47-56.
  • 8Chen B C,Peng H.Rollover warning for articulated heavy vehi-cles based on a time-to-rollover metric[J].Transaction of theASME,2005,127(9):406-414.
  • 9Chen B C,Peng H.Differential-braking-based rollover preventionfor sport utility vehicles with human-in-the-loop evaluations[J].Vehicle System Dynamics,2001,36(4-5):359-389.
  • 10Boada M J L,Boada B L,Babe A G,et al.Active roll control u-sing reinforcement learning for a single unit heavy vehicle[J].In-ternational Journal of Heavy Vehicle Systems,2009,16(4):412-430.

共引文献71

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部