期刊文献+

基于深度学习的地震与爆破事件自动识别研究 被引量:1

Automatic Recognition of Earthquake and Blasting Events Based on Deep Learning
下载PDF
导出
摘要 针对天然地震事件、爆破事件分类问题,使用甘肃及周边地区80个天然地震事件和20个爆破事件建立数据集,采取深度学习卷积神经网络(convolutional neural network,CNN)方法搭建两个不同结构的模型进行训练,并用500条训练集之外的天然地震事件与爆破事件波形作为测试数据集,其训练和测试准确率均达到90%以上。结果表明,本文设计的两种模型均具有一定的泛化能力,尤其是Inception V1模型在天然地震事件与爆破事件分类识别中效果良好。 Aiming at the classification of natural earthquake events and blasting events,we use 80 natural earthquake events and 20 blasting events in Gansu and its surrounding areas to establish datasets,and apply deep learning convolutional neural network(CNN)method to build two models with different structures for training,and use 500 waveforms of natural earthquakes events and blasting events out of the training sets as test datasets.The accuracy of training and testing is more than 90%.The results show that two training models designed in this paper have a certain generalization ability;especially the Inception V1 model has good effect in the classification and recognition of natural earthquake events and blasting events.
作者 高永国 尹欣欣 李少华 GAO Yongguo;YIN Xinxin;LI Shaohua(Gansu Earthquake Agency,450 West-Donggang Road,Lanzhou 730000,China;Lanzhou Institute of Geotechnique and Earthquake,CEA,450 West-Donggang Road,Lanzhou 730000,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2022年第4期426-430,共5页 Journal of Geodesy and Geodynamics
基金 甘肃省地震局地震科技发展基金(2020M01) 兰州地球物理国家野外科学观测研究站项目(2021Y10)。
关键词 卷积神经网络 深度学习 震相 爆破 分类识别 convolutional neural network deep learning seismic phase blasting classification and recognition
  • 相关文献

参考文献5

二级参考文献35

  • 1高淑芳,李山有,武东坡,马强.一种改进的STA/LTA震相自动识别方法[J].世界地震工程,2008,24(2):37-41. 被引量:35
  • 2何小波,周蕙兰.利用定尺度小波变换比方法测量远震极远震P和PKIKP震相到时[J].地震学报,2005,27(4):385-393. 被引量:4
  • 3边银菊.Fisher方法在震级比mb/MS判据识别爆炸中的应用研究[J].地震学报,2005,27(4):414-422. 被引量:14
  • 4靳平 周青云 潘常周.地震事件区域识别判据研究(二):P/S震相幅值比.试验与研究,2001,24(1):14-28.
  • 5Bennett T J, Murphy J R. 1986. Analysis of seismic discrimination capabilities using regional data from Western United States event[J]. Bull Seism Soc Amer, 76:1 069-1 086.
  • 6Fisk M, Bottone S. 2000. Regional seismic event characterization using a Bayesian Kriging approach[C/OL]//The 22nd Annual DoD / DOE Seismic Research Symposium : Planning for Verification of and Compliance with the Compre hensive Nuclear-Test Ban Treaty(CTBT), 01-03[2001 10-01]. http: //www. nemre. nn. doe. gov/review.
  • 7Gupta I N, Burnetti J A. 1981. An investigation of discriminants for events in western USSR based on regional phases recorded at station Kabul[J]. Bull Seism Soc Amer, 71: 263-274.
  • 8Hartse H E, Taylor S R, Phillips W S, et al. 1997. Preliminary study of seismic discrimination in central Asia with em phasis on western China[J]. Bull Seism Soc Amer, 87:551-568.
  • 9Murphy J R, Bennett T J. 1982. A discrimination analysis of short period regional data at Tonto Forest Observatory[J]. Bull Seism Soc Amer, 72:1 351- 1 366.
  • 10Pomeroy P W, Best W J, McEvilly T C. 1982. Test ban treaty verification with regional data: A review[J]. Bull Seism Soc Amer, 72:S89-S129.

共引文献150

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部