期刊文献+

羟基磷灰石与氧化锆体积比对钛基复合支架力学性能和腐蚀性能的影响 被引量:1

Effect of hydroxyapatite:zirconia volume fraction ratio on mechanical and corrosive properties of Ti-matrix composite scaffolds
下载PDF
导出
摘要 通过环保、低成本的混合法制备氧化锆(ZrO2)和羟基磷灰石(HA)增强钛基支架材料,该材料具有较低的弹性模量(E)、足够的物理、电化学和生物学性能。研究羟基磷灰石和氧化锆体积分数的变化对支架力学性能、腐蚀性能和抗菌性能的影响。采用扫描电子显微镜结合电子色散光谱和X射线衍射对支架进行表征,通过压缩试验检测材料的力学性能及其详细的断裂机制,用电化学法测试样品在37℃模拟体液中的体外腐蚀敏感性,通过比较大肠杆菌和金黄色葡萄球菌的抑菌面积进行抑菌试验。结果表明,随着HA:ZrO_(2)体积分数比例的增加,支架的力学强度降低,当其比例为6:4时,复合支架的E最低(6.61GPa)。纯钛、HA:ZrO_(2)体积分数比例为3:2和6:4的支架材料,其腐蚀电流密度(J_(corr))分别为21、337和504μA/cm^(2)。体积分数比例为6:4的支架对金黄色葡萄球菌的抑菌能力优于其他支架。 Ti-based scaffolds reinforced with zirconia and hydroxyapatite were produced successfully by a hybrid method with an eco-friendliness and low cost to obtain low elastic modulus(E) with sufficient physical, electrochemical and biological properties. The effect of simultaneous modification of the volume fraction of hydroxyapatite(HA) and zirconia(ZrO_(2)) on scaffolds was investigated in terms of mechanical, corrosive, and antibacterial properties. Scanning electron microscopy with attached electron dispersive spectroscopy and X-ray diffraction were used for the characterization of scaffolds. Compression and electrochemical tests were performed to determine mechanical properties with detailed fracture mechanism and in-vitro corrosion susceptibility to simulated body fluid at 37 ℃,respectively. Antibacterial tests were carried out by comparing the inhibition areas of E.coli and S.aureus bacteria. It was observed that the mechanical strength of the scaffolds decreased with increasing HA:ZrO_(2)volume fraction ratio.The lowest E was achieved(6.61 GPa) in 6:4 HA:ZrO_(2)composite scaffolds. Corrosion current density(J_(corr)) values were calculated to be 21, 337, and 504 μ A/cm^(2) for unreinforced Ti, 3:2 and 6:4 HA:ZrO_(2)reinforced scaffolds,respectively. The inhibition capacity of the 6:4 reinforced composite scaffold was found to be more effective against S.aureus bacteria than other scaffolds.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第3期882-894,共13页 中国有色金属学报(英文版)
基金 the financial supports from the Research Fund of Atatürk University, Turkey (No. FDK-2019-7281)。
关键词 钛生物复合材料 羟基磷灰石 氧化锆 支架 力学性能 体外腐蚀 titanium biocomposite hydroxyapatite zirconia scaffold mechanical properties in-vitro corrosion
  • 相关文献

参考文献5

二级参考文献19

  • 1LIU B, LIU Y, HE X Y, TANG H P, CHEN L F, HUANG B Y. Preparation and mechanical properties of particulate-reinforced powder metallurgy titanium matrix composites [J]. Metallurgical and Materials Transactions A, 2007, 38(11 ): 2825-2831.
  • 2RANGANATH S. A review on particulate-reinforced titanium matrix composites [J]. Journal of Materials Science, 1997, 32 ( 1 ): 1 - 16.
  • 3HELSEN J A, BREME H J. Metals as biomaterials [M]. 1st ed. Chichester: John Wiley & Sons, 1998: 73-100.
  • 4IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Particulate reinforced metal matrix composites-A review [J]. Journal of Materials Science, 1991,26(5): 1137-1156.
  • 5KACZMAR J W, PIETRZAK K, WLOSINSKI W. The production and application of metal matrix composite materials [J]. Journal of Materials Processing Technology, 2000, 106( 1-3): 58-67.
  • 6LIU Y, CHEN L F, TANG H P, LIU C 1", LIU B, HUANG B Y. Design of powder metallurgy titanium alloys and composites [J]. Materials Science and Engineering A, 2006, 418( 1-2): 25-35.
  • 7POLMEAR I J. Titanium alloys light alloys [M]. 4st ed. Oxford: Butterworth-Heinemann, 2005: 299-365.
  • 8RACK H J, QAZI J I. Titanium alloys for biomedical applications [J] Materials Science and Engineering C, 2006, 26: 1269-1277.
  • 9WEN C E, YAMADA Y, SHIMOJIMA K, SHIMOJIMA, CHINO Y, HOSOKAWA H, MABUCH. Novel titanium foam for bone tissue engineering [J]. Journal of Materials Research, 2002, 17: 2633-2639.
  • 10PICONI C, MACCAURO G. Zirconia as a ceramic biomaterial [J]. Biomaterials, 1999, 20: 1-25.

共引文献53

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部