期刊文献+

一种面向中医医案知识图谱的链路预测模型 被引量:7

A Link Prediction Model for Knowledge Graph of TCM Medical Records
下载PDF
导出
摘要 知识图谱有助于实现智能化、个性化的中医药知识服务,其中链路预测可以解决知识图谱中缺失信息的发现与还原,也是目前知识图谱应用领域中的研究热点之一。但目前补全的医学知识图谱很少覆盖类型和层级结构,而且链路预测未考虑到关系三元组。本文创新性地提出一种新的归纳推理模型HSTP(HierarchicalStructureType),基于类型和层级结构获取信息,利用知识图谱中实体之间的语义关联,将类型、节点与关系进行融合,然后提出一个关系相关网络来学习不同模式对归纳链路预测的重要性,最终得到真实和完整的中医医案知识图谱。结果表明,该模型能够有效表达实体之间的语义关联,在链路预测任务的基准数据集上提高了3.9%左右,可以为解决知识图谱中缺失信息的发现与还原提供研究基础。 Knowledge graph(KG)helps to realize intelligent and personalized knowledge service of TCM.Link prediction can solve the discovery and restoration of missing information in KG,and it is also one of the research hotspots in the field of KG application.However,the current complementary medical KG rarely covers types and hierarchical structures,and link prediction does not take relational triples into account.This study proposed a new inductive reasoning model HSTP(Hierarchical Structure Type).The information is obtained based on the type and hierarchical structure,and the semantic association between entities in the KG is used to integrate the type,node and relationship.Then,a relational network is proposed to learn the importance of different models for inductive link prediction,and finally a real and complete KG of TCM medical records is obtained.The results showed that the model could effectively express the semantic association between entities,and improve about 3.9%on the benchmark dataset of link prediction task,which provided a research basis for solving the discovery and restoration of missing information in KG.
作者 羊艳玲 李燕 钟昕妤 YANG Yanling;LI Yan;ZHONG Xinyu(College of Information Engineering,Gansu University of Chinese Medicine,Lanzhou 730000,China)
出处 《中医药信息》 2022年第3期1-6,15,共7页 Information on Traditional Chinese Medicine
基金 中国高校产学研创新基金-异构智能计算项目(2020HYA02008) 甘肃中医药大学研究生创新基金项目(2021CX76)。
关键词 知识图谱 链路预测 中医医案 Knowledge graph Link prediction TCM medical records
  • 相关文献

参考文献6

二级参考文献96

  • 1刘开瑛.现代汉语自动分词评测技术研究[J].语言文字应用,1997(1):103-108. 被引量:15
  • 2秦颖,王小捷,张素香.汉语分词中组合歧义字段的研究[J].中文信息学报,2007,21(1):3-8. 被引量:11
  • 3黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:250
  • 4郑家恒,张剑锋,谭红叶.中文分词中歧义切分处理策略[J].山西大学学报(自然科学版),2007,30(2):163-167. 被引量:10
  • 5GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12.
  • 6SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386.
  • 7ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73.
  • 8POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87.
  • 9O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30.
  • 10LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304.

共引文献339

同被引文献108

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部