期刊文献+

基于能量效率优化的超密集网络干扰协调方案

An interference coordination algorithm based on the energy efficiency optimization in UDNs
下载PDF
导出
摘要 针对超密集网络场景,提出一种基于能量效率优化的干扰协调方案,通过粒子群优化算法联合调整基站活跃状态概率、基站发射功率以及协作用户数量,并在确保边缘用户满意度的前提下,优化系统的能量效率。实验结果证明,提出的方案相比传统联合传输方案可获得10.30%的能量效率增益,相比非协作方案可获得18.73%的能量效率增益。 An interference coordination scheme based on energy efficiency optimization is proposed in the ultra-dense network(UDN)scenario.Particle swarm optimization algorithm is used to jointly adjust the probability of active base stations and the transmitting power of base stations,as well as the number of cooperative users to optimize the energy efficiency of the system on the premise of ensuring the satisfaction of edge users.The simulation results show that the proposed scheme can obtain 10.30%energy efficiency gain compared with the traditional JT scheme,and 18.73%energy efficiency gain compared with the non-JT scheme.
作者 李晓娜 付婧雯 LI Xiao-na;FU Jing-wen(Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China;School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《信息技术》 2022年第3期49-55,共7页 Information Technology
基金 国家重点研发计划基金资助项目(2017YFB0801903)。
关键词 5G 干扰协调 超密集网络 能量效率 协作传输 5G interference coordination ultra-dense network energy efficiency joint transmission
  • 相关文献

参考文献2

二级参考文献17

  • 1Bjornson E,Kountouris M,Debbah M.Massive MIMO and smallcells:Improving energy efficiency by optimal soft-cell coordination[C]Proc.Int.Conf.Telecommun.(ICT),2013.
  • 2Bjornson E,Sanguinetti L,Hoydis J,et al.Designing Multi-User MIMO for Energy Efficiency:When is Massive MIMO the Answer[C].IEEE Wireless Commun.and Networking Conf.,2014.
  • 3Cui S,Goldsmith A,Bahai A.Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks[J].IEEE J.Sel.Areas Commun.,2004,22(6):1089-1098.
  • 4Y. Wang, X. Yang, and L. Yang, "Dynamic CoMP configuration for OFDMA networks under dif- ferent user traffic scenarios", Software, Telecom- munications and Computer Networks (SoftCOM), pp 274-279, Sept. 2015.
  • 5J. Gong, S. Zhou, Z. Niu, et al, "Traffic-aware base station sleeping in dense cellular net- works", Quality of Service (IWQoS), Beijing, Chi- na, pp 1-2, June, 2010.
  • 6Y. Wei, S. Mei, B. Liu, et al., "Energy efficient cooperative relaying and cognitive radio tech- nologies to deliver green communication", Pervasive Computing and Applications (ICPCA), Port Elizabeth, S. Africa, pp 105-109, Oct. 2011.
  • 7Giovanni Geraci, Matthias Wildemeersch, and Tony Q. S. Quek, "Distributed network man- agement for green wireless communications", Global Communications Conference (GLOBE- COM), San Diego, U.S., pp 1-7, Dec, 2015.
  • 8Z, Niu, S. Zhou and Y. Hua, "Energy-aware net- work planning for wireless cellular system with inter-cell cooperation", Transacffons on Wireless Communications, vo1.11, no.4, pp 1412-1423, Apirl, 2012.
  • 9D. Cao, S. Zhou and Z. Niu, "Optimal base sta- tion density for energy-efficient heterogeneous cellular networks", International Conference on Communications (/CC), Ottawa, Canada, pp 4379-4383, June, 2012.
  • 103GPP TS 32.551, "Energy saving management (ESM)", Concept and Requirements, v10.1.0, May, 2011.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部