期刊文献+

基于用户和内容的混合模式推荐算法研究 被引量:2

Research on Mixed Mode Recommendation Algorithm Based on User and Content
下载PDF
导出
摘要 推荐系统中的协同过滤算法和基于内容推荐算法都能够进行相关推荐,但是算法中存在的不足会导致推荐结果不准确。为提高推荐准确度,本文提出一种混合模式的推荐算法,建立用户的兴趣模型,对目标用户进行个性化的物品推荐。最后利用Movies Lens数据集进行训练并评估基于用户和基于内容的混合模式推荐算法的准确度。 Both the collaborative filtering algorithm and the content-based recommendation algorithm in the recommendation system can make relevant recommendations,but the deficiencies in the algorithms can lead to inaccurate recommendation results.In order to improve the recommendation accuracy,this paper proposes a mixed-mode recommendation algorithm,establishes a user's interest model,and recommends personalized items to target users.Finally,the Movies Lens dataset is used to train and evaluate the accuracy of the user-based and contentbased hybrid mode recommendation algorithm.
作者 李盼颖 韩雨轩 温秀梅 LI Panying;HAN Yuxuan;WEN Xiumei(Hebei Institute of Architecture and Engineering,Zhangjiakou Hebei 075000)
出处 《软件》 2022年第2期13-15,共3页 Software
基金 河北省省属高等学校基本科研业务费研究项目(2021XSTD04) 张家口市大数据技术创新中心。
关键词 协同过滤 内容过滤 混合推荐 collaborative filtering content filtering hybrid recommendation
  • 相关文献

参考文献3

二级参考文献97

  • 1张丙奇.基于领域知识的个性化推荐算法研究[J].计算机工程,2005,31(21):7-9. 被引量:34
  • 2彭玉,程小平,徐艺萍.一种改进的Item-based协同过滤推荐算法[J].西南大学学报(自然科学版),2007,29(5):146-149. 被引量:17
  • 3Labrinidis A, Jagadish H V. Challenges and opportuni- ties with big data[ J]. Proceedings of the VLDB Endow- ment, 2012, 5(12): 2032-2033.
  • 4Ye Tao, Bickson D, Yan Qiang. Second workshop on large-scale recommender systems: research and best prac- tice [ C ] //J 8'h ACM Conference on Recommender Sys- tems, 2014 ACM. Silicon Valley: ACM Press, 2014: 385 -386.
  • 5Hong Jongyi, Suh E H, Kim J, et al. Contextaware sys- tem for proactive personalized service based on context history [J]. Expert Systems with Applications, 2009, 36 (4) : 7448-7457.
  • 6Pessemier T D, Deryckere T, Martens L. Extending the Bayesian classifier to a context-aware recommender system for mobile devices [ C ]//Internet and Web Applications and Services (ICIW), 2010 Fifth International Confer- ence on IEEE. Barcelona, Spain: IEEE Press, 2010: 242-247.
  • 7Shahabi C, Chen Yishin. An adaptive recommendation system without explicit acquisition of user relevanee feed- back [J]. Distributed and Parallel Databases, 2003, 14 (2) : 173-192.
  • 8Yang Diyi, Chen Tianqi, Zhang Weinan, et al. Local implicit feedback mining for music recommendation [ C 1// the 6th ACM Conference on Recommender Systems, 2012 ACM. Dublin: ACM Press, 2012: 91-98.
  • 9Rafailidis D, Nanopoulos A. Modeling the dynamics of user preferences in coupled tensor factorization [ C ] // the 8'h ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 321- 324.
  • 10Oh K J, Lee W J, Lim C G, et al. Personalized news recommendation using classified keywords to capture user preference [ C ] //16th Advanced Communication Technology (ICACT) , 2014 International Conference on IEEE. South Korea: IEEE Press, 2014: 1283-1287.

共引文献205

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部