期刊文献+

基于动态权重的自适应PSO-BP神经网络焊接缺陷成因诊断 被引量:4

Cause diagnosis of welding defects based on adaptive PSOBP neural network with dynamic weighting
下载PDF
导出
摘要 焊接缺陷产生原因复杂,影响因素众多,基于人工智能的缺陷成因诊断算法成为焊接智能化的发展方向.将PSO-BP神经网络应用于焊接缺陷成因诊断,利用神经网络的连接学习机制代替传统专家系统的规则推理机制,并对PSO算法进行自适应调整,引入动态权重因子,搭建自适应PSO-BP神经网络模型.结果表明,与传统PSO-BP神经网络模型相比,改进的PSO-BP神经网络模型训练所需要的迭代次数减少13.1%,诊断结果准确率从93.3%提高至96.7%,精确率从91.3%提高至98.3%,综合能力指标从91.7%提高至96.9%.改进算法能够明显提升焊接缺陷成因诊断的效率和精度,具有较好的工程应用价值. Considering the complex causes and various impact factors for welding defects,diagnosis methods based on artificial intelligence algorithms are regarded as one of the directions for the development of intelligentizing welding.In this study,an improved diagnosis method for welding defect based on PSO-BP neural network is proposed.Connection learning mechanism of neural network is used instead of the rule reasoning mechanism of traditional expert systems.It also makes adaptive adjustments to the PSO algorithm,introduced dynamic weight factors,and builds an adaptive PSO-BP neural network model.Compared with the traditional PSO-BP neural network model,the number of iterations required to train the improved PSO-BP neural network model reduced by 13.1%,the accuracy of diagnostic results increased from 93.3%to 96.7%,the precision increased from 91.3%to 98.3%,and the comprehensive performance index increased from 91.7%to 96.9%.The results show that the improved algorithm can significantly improve the efficiency and accuracy of welding defect diagnosis,and has good engineering application value.
作者 高昶霖 宋燕利 左洪洲 章诚 GAO Changlin;SONG Yanli;ZUO Hongzhou;ZHANG Cheng(Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology,Wuhan,430070,China;Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan University of Technology,Wuhan,430070,China;Hubei Engineering Research Center for Green&Precision Material Forming,Wuhan University of Technology,Wuhan,430070,China;Hubei Qixing Automobile Body Co.,Ltd.,Suizhou,441300,China)
出处 《焊接学报》 EI CAS CSCD 北大核心 2022年第1期98-106,I0009,I0010,共11页 Transactions of The China Welding Institution
基金 湖北省技术创新专项(2019AAA014) 湖北省重点研发计划项目(2020BAB143) 新能源汽车科学与关键技术学科创新引智基地(B17034) 教育部创新团队发展计划资助项目(IRT_17R83)。
关键词 焊接缺陷成因 神经网络 动态权重 自适应 cause of welding defects neural network dynamic weighting adaptive
  • 相关文献

参考文献8

二级参考文献79

共引文献172

同被引文献87

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部