期刊文献+

基于深度学习的车辆类别检测研究与实践

Research and practice of vehicle category detection based on deep learning
下载PDF
导出
摘要 使用基于深度神经网络的VGG模型,能有效的解决传统目标检测需要人工提取,费时费力的缺点,并提高模型的泛化能力。通过研究分析VGG模型,利用Keras框架实现了此模型在迁移学习上的应用。实验通过对不同品牌的车辆训练集训练与调参,测试集的数据准确率提高到近90%。 In traditonal target recognition, manually extracting features from different environments is time-consuming and laborious.The VGG model based on deep neural network can effectively solve these problems and improve the generalization ability of the model.By research on the VGG model, the application of VGG model in transfer learning is realized by using Keras framework. Through the training and parameter adjustment of vehicle training sets of different brands, the data accuracy of the test set is improved to nearly 90%.
作者 甘丽 GAN Li(Maanshan Teachefs School,Maanshan 243041,China)
出处 《安徽水利水电职业技术学院学报》 2022年第1期43-47,78,共6页 Journal of Anhui Technical College of Water Resources and Hydroelectric Power
基金 安徽高校自然科学研究项目(KJ2019A1200)。
关键词 VGG模型 深度学习 迁移学习 Keras VGG model deep learning transfer learning Keras
  • 相关文献

参考文献5

二级参考文献75

  • 1LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 2HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 3LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 4HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 6GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 7LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 8SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.
  • 9SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8.
  • 10HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [EB/OL]. [2016-01-04]. https://www.researchgate.net/publication/286512696_Deep_Residual_Learning_for_Image_Recognition.

共引文献595

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部