摘要
The demand for redundant hydraulic manipulators that can implement complex heavy-duty tasks in unstructured areas is increasing;however,current manipulator layouts that remarkably differ from human arms make intuitive kinematic operation challenging to achieve.This study proposes a seven-degree-of-freedom(7-DOF)redundant anthropomorphic hydraulically actuated manipulator with a novel roll-pitch-yaw spherical wrist.A hybrid series-parallel mechanism is presented to achieve the spherical wrist design,which consists of two parallel linear hydraulic cylinders to drive the yaw/pitch 2-DOF wrist plate connected serially to the roll structure.Designed as a 1R£RRR-1S£U mechanism(“R”,“P”,“S”,and“U”denote revolute,prismatic,spherical,and universal joints,respectively;the underlined letter indicates the active joint),the 2-DOF parallel structure is partially decoupled to obtain simple forward/inverse kinematic solutions in which a closed-loop subchain“R£RR”is included.The 7-DOF manipulator is then designed,and its third joint axis goes through the spherical center to obtain closed-form inverse kinematic computation.The analytical inverse kinematic solution is drawn by constructing self-motion manifolds.Finally,a physical prototype is developed,and the kinematic analysis is validated via numerical simulation and test results.
基金
This work was supported in part by the National Natural Science Foundation of China(Grant Nos.91748210 and 51922093)
in part by the Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-msxmX0780)
in part by the Fundamental Research Funds for the Central Universities,China(Grant No.2021CDJKYJH019).