期刊文献+

Systematic comparison of epidemic growth patterns using two different estimation approaches

原文传递
导出
摘要 Background:Different estimation approaches are frequently used to calibrate mathematical models to epidemiological data,particularly for analyzing infectious disease outbreaks.Here,we use two common methods to estimate parameters that characterize growth patterns using the generalized growth model(GGM)calibrated to real outbreak datasets.Materials and methods:Data from 31 outbreaks are used to fit the GGM to the ascending phase of each outbreak and estimate the parameters using both least squares(LSQ)and maximum likelihood estimation(MLE)methods.We utilize parametric bootstrapping to construct confidence intervals for parameter estimates.We compare the results including RMSE,Anscombe residual,and 95%prediction interval coverage.We also evaluate the correlation between the estimates from both methods.Results:Comparing LSQ and MLE estimates,most outbreaks have similar parameter estimates,RMSE,Anscombe,and 95%prediction interval coverage.Parameter estimates do not differ across methods when the model yields a good fit to the early growth phase.However,for two outbreaks,there are systematic deviations in model fit to the data that explain differences in parameter estimates(e.g.,residuals represent random error rather than systematic deviation).Conclusion:Our findings indicate that utilizing LSQ and MLE methods produce similar results in the context of characterizing epidemic growth patterns with the GGM,provided that the model yields a good fit to the data.
出处 《Infectious Disease Modelling》 2021年第1期5-14,共10页 传染病建模(英文)
基金 NSF grant 1414374 as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program UK Biotechnology and Biological Sciences Research Council grant BB/M008894/1.
  • 相关文献

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部