期刊文献+

溶剂工程调控钙钛矿薄膜中PbI2和PbI2(DMSO)的形成 被引量:2

Controllable Formation of PbI_(2) and PbI_(2)(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering
下载PDF
导出
摘要 钙钛矿太阳能电池以其高效、低成本的特点备受关注。到目前为止,钙钛矿太阳能电池的最高光电转换效率已经超过25%,显示出良好的应用前景。钙钛矿薄膜的结晶性能是决定器件性能的关键,因此,调控钙钛矿薄膜的生长过程至关重要。本工作中,我们发现通过简单调节前驱体溶剂,即调节二甲基亚砜:1,4-丁内酯:N,N-二甲基甲酰胺(DMSO:GBL:DMF)的三种混合溶剂的比例,可实现钙钛矿薄膜中PbI_(2)和PbI_(2)(DMSO)含量的调节,从而调节电池的器件性能。此外,本工作系统研究了PbI_(2)和PbI_(2)(DMSO)的含量对器件性能的影响。结果表明,PbI_(2)(DMSO)的形成会导致300–425 nm波长范围内电池的外量子效率(EQE)降低,从而导致器件性能下降。相反,通过在前驱体溶液中添加额外的碘化亚甲基铵(MAI),可以抑制PbI_(2)和PbI_(2)(DMSO)的形成。 Perovskite solar cells(PSCs)attract much attention for their high efficiency and low processing cost.Power conversion efficiencies(PCEs)higher than 25%have been reported in literature,demonstrating the excellent application prospect of PSCs.In general,the crystallinity and the film composition of perovskite thin films are significant factors in determining device performance.Much effort has been made to control the growth process of perovskite films through the use of additives,passivation layers,special atmosphere treatments,precursor regulation etc.Among these methods,precursor solvent engineering is a simple and direct way to control the perovskite quality,but the controllability of components through solvent engineering is still difficult and has not yet been reported.Herein,we report the controlled formation of PbI_(2) and PbI_(2) with dimethyl sulfoxide(DMSO)nano domains through precursor solvent engineering.In particular,tuning the solvent content of the dimethyl sulfoxide:1,4-butyrolactone:N,N-dimethylformamide(DMSO:GBL:DMF)in the perovskite precursor solution,controlled the content of PbI_(2) and PbI_(2)(DMSO)domains.Due to the lower boiling point and weaker coordination of DMF relative to DMSO,part of methylammonium iodide(MAI)would escape from the wet films during the evaporation process.Therefore,the PbI_(2)(DMSO)can’t completely convert to perovskite crystals and is retained in the final films as residual PbI_(2)(DMSO)domains.Both UVvis absorption spectrum and XRD spectrum confirmed the existence of PbI_(2) and PbI_(2)(DMSO)domains.Importantly,the content of PbI_(2)(DMSO)was controllable by simply changing the relative proportion of DMF.With an increase in the DMF content,the residual PbI2(DMSO)domains gradually increase.In addition,the influence of PbI_(2) and PbI_(2)(DMSO)domains on the device performance was systematically investigated.The formation of PbI_(2)(DMSO)domains caused a decrease in external quantum efficiency(EQE)of the device over 300–425 nm,and consequently decreased the device performance.That was because the PbI_(2)(DMSO)domain has strong absorption over 300–425 nm.Therefore,the PbI_(2)(DMSO)domains would absorb the photons over 300–425 nm prior to the perovskite,however the photons absorbed by the PbI_(2)(DMSO)domains are not converted into the photocurrent.Thus,the perovskite solar cell containing PbI_(2)(DMSO)showed an EQE loss over 300–425 nm in the EQE spectra.This work provides a simple method to control the components,especially the content of the PbI_(2)(DMSO)domains,in perovskite films through regulating the precursor solvent.Additionally,this work revealed a PbI_(2)(DMSO)domain related EQE loss phenomenon,highlighting the importance of controlling this component.
作者 查吴送 张连萍 文龙 康嘉晨 骆群 陈沁 杨上峰 马昌期 Wusong Zha;Lianping Zhang;Long Wen;Jiachen Kang;Qun Luo;Qin Chen;Shangfeng Yang;Chang-Qi Ma(Nano Science and Technology Institute,University of Science and Technology of China,Suzhou 215123,Jiangsu Province,China.;Printable Electronics Research Center,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,Jiangsu Province,China.;Institute of Nanophotonic,Jinan University,Guangzhou 511443,China.;Suzhou Institute of Nano-Tech and Nano-Bionics Nanchang,Chinese Academy of Sciences,Nanchang 330200,China.;Department of Materials Science and Engineering,Synergetic Innovation Center of Quantum Information&Quantum Physics,University of Science and Technology of China,Hefei 230026,China.)
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2022年第3期39-46,共8页 Acta Physico-Chimica Sinica
基金 江苏省自然科学基金(BK20181197) 江西省自然科学基金(20181BAB206017) 中国科学院青年创新促进会(2019317) 国家自然科学基金(51773224)资助项目。
关键词 钙钛矿太阳能电池 PbI_(2) PbI_(2)(DMSO) 钙钛矿前驱体 外量子效率 Perovskite solar cell PbI_(2) PbI_(2)(DMSO) Perovskite precursor External quantum efficiency
  • 相关文献

参考文献1

二级参考文献36

  • 1Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131 (17): 6050. doi: 10.1021/ja809598r.
  • 2Heo, J. H.; lm, S. H.; Noh, J. H.; Mandal, T. N.; Lira, C. S.; Chang, J. A.: Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddind, M. K.; Gratzel, M.: Seok, S. 1. Nat. Photonics 2013, 7 (6): 486 doi: 10.1038/nphoton.2013.80.
  • 3Lee, M. M.; Teuscher, J.; Miyasaka T. Mumkami, T. N.; Snaith, H. J. Science 2012, 338 (6107): 643. doi: 10. 1126/ science. 1228604.
  • 4Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Nature 2013, 499 (7458): 316. doi: 10.1038/nature12340.
  • 5Jeon, N. J.; Noh, J. H.: Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Matel: 2014, 13 (9): 897. doi: 10.1038/nmat4014.
  • 6Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501 (7467): 395. doi: 10.1038/nature12509.
  • 7Noh, J. H.; lm, S. H.; Heo, J. H.; Mandal, T. N., Seok, S. I. Nano Lett. 2013, 13 (4): 1764. doi: 10.]021/n1400349b.
  • 8Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G. Adv. Mates: 2014, 26 (29): 4991. doi: 10.1002/adma.201401137.
  • 9Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K., Maier, J.; Gritzel, M. Angen: Chem. Int. Ed. 2014, 53 (12): 3151. doi: 10.1002/anie.201309361.
  • 10Liu, X. E: Kong, F. T.; Chen, W. C.; Yu, T.; Guo, F. L.; Chen, J.: Dai, S. Y. Acta Phys. -Chim. Sin. 2016, 32 (6): 1347.

共引文献5

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部