期刊文献+

具有Markov切换的随机COVID-19传染病模型的动力学行为

Dynamic Behavior of a Stochastic COVID-19 Infectious Disease Model with Markov Switching
下载PDF
导出
摘要 本文研究了具有Markov切换的随机COVID-19传染病模型的动力学行为。首先通过构造合适的V函数,并利用Ito公式证明了随机COVID-19传染病模型全局正解的存在唯一性,然后根据定义的阈值参数大小分析出该传染病灭绝的充分条件,最后结合来自印度的马哈拉施特拉邦和德里的真实新冠肺炎数据对所建立的模型进行了数值模拟,证明了理论结果。 This paper talks about the dynamic behavior of a stochastic COVID-19 infectious disease model with Markov switching.Firstly,the existence and uniqueness of the global positive solution of the stochastic COVID-19 infectious disease model is proved by constructing an appropriate V function with the aid of Ito formula.Then,the sufficient conditions for the extinction of the infectious disease are analyzed in accordance with the size of the defined threshold parameters.Finally,the theoretical results are verified by numerical simulation of the established model on the basis of real COVID-19 data from Maharashtra and Delhi,India.
作者 何雪晴 韦煜明 HE Xue-qing;WEI Yu-ming(School of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 514006,China)
出处 《西华师范大学学报(自然科学版)》 2022年第1期47-53,共7页 Journal of China West Normal University(Natural Sciences)
基金 国家自然科学基金项目(11961074) 广西科技基地和人才专项项目(2018AD19211)。
关键词 随机COVID-19传染病模型 Markov切换 灭绝 ITO公式 stochastic COVID-19 infectious disease model Markov switching extinction Ito formula
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部