摘要
Void nucleation and growth under dynamic loading are essential for damage initiation and evolution in ductile metals.In the past few decades,the development of experimental techniques and simulation methods has helped to reveal a wealth of information about the nucleation and growth process from its microscopic aspects to macroscopic ones.Powerful and effective theoretical approaches have been developed based on this information and have helped in the analysis of the damage states of structures,thereby making an important contribution to the design of damageresistant materials.This Review presents a brief overview of theoretical models related to the mechanisms of void nucleation and growth under dynamic loading.Classical work and recent research progress are summarized,together with discussion of some aspects deserving further study.
基金
Financial support for this work was provided by the Science Challenge Project(Grant No.TZ2018001)
the National Natural Science Foundation of China(Grant Nos.11988102,11632001,11521202,and 12002005).