期刊文献+

运行参数对全钒液流电池离子跨膜迁移的影响

Effect of operating parameters on ion cross transfer in all-vanadium redox battery
下载PDF
导出
摘要 全钒液流电池(all-vanadium redox flow battery,VRFB)是特别适用于大规模储能的二次电池,但在实际应用过程中存在着正负极间不同价态的钒离子、硫酸根离子、氢离子和水的迁移现象。这会引起电解液中各种离子摩尔数的变化、电池容量的衰减和正负极间电解液体积差值的变化。因此,运行一段时间就要打开正负极间设置的联通管阀门混合电解液。针对正负极间电解液中各种离子的摩尔数变化情况建立VRFB的动态模型,分析流量、电流和充电状态(state of charge,SOC)范围等运行参数对正极或负极钒离子总摩尔数、硫酸根离子和氢离子总摩尔数变化的影响。如果SOC的运行范围合适,正负极间钒离子总摩尔数差值就会较小。所建模型与仿真结果将为运行过程中VRFB电解液组分的预测和调节提供有效的依据。 All vanadium redox flow battery(VRFB)is especially suitable for large-scale energy storage.However,in the practical application of VRFB,there are different valence states of vanadium ions,sulfate ions,hydrogen ions and water between the positive and negative electrodes.This will lead to the change of moles of various ions in the electrolyte,the attenuation of battery capacity and the change of electrolyte volume difference between positive and negative electrodes.Therefore,it is necessary to open the connecting pipe valve set between the positive and negative electrodes to mix electrolyte after running for a period of time.A dynamic model of VRFB was established to analyze the effects of operating parameters such as flow rate,current and state of charge(SOC)range on the total moles of vanadium ion,sulfate ion and hydrogen ion.If the operating range of SOC is suitable,the total moles difference of vanadium ions between positive and negative electrodes will be smaller.The model and simulation results will provide an effective basis for the prediction and regulation of VRFB electrolyte components during operation.
作者 李明华 王保国 范永生 LI Minghua;WANG Baoguo;FAN Yongsheng(College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao Shandong 266590,China;Department of Chemical Engineering,Tsinghua University,Beijing 100084,China;National Institute of Clean and-Low-Carbon Energy,Beijing 102211,China)
出处 《电源技术》 CAS 北大核心 2022年第3期294-298,共5页 Chinese Journal of Power Sources
基金 山东科技大学引进人才科研启动基金项目(2015RCJJ072)。
关键词 全钒液流电池 动态模型 离子迁移 充电状态范围 all-vanadium redox flow battery dynamic model ion transfer state of charge range
  • 相关文献

参考文献3

二级参考文献24

  • 1张华民.储能与液流电池技术[J].储能科学与技术,2012,1(1):58-63. 被引量:36
  • 2杨裕生,蔡生民,林祖赓,衣宝廉,郑健超,陈立泉.简述发展大规模蓄电的液流蓄电池[J].科技导报,2006,24(8):63-66. 被引量:11
  • 3ZHANG L, CHENG J, YANG Y S, et al.Preliminary study of single flow zinc-nickel battery[J].Electrochemistry Communications,2007, 9:2639-2642.
  • 4DEREK P, RICHARD W. A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(Ⅱ).Part:Ⅱ:flow cell studies [J]. Phys Chem Chem Phys,2004,6:1779-1785.
  • 5SKYLLAS-KAZACOS M, KASHERMAN D, HONG D R, et al. Characteristics and performance of 1 kW UNSW vanadium redox battery[J].Journal of Power Sources,1991,35:399-404.
  • 6BURNEY H S,WHITE R E. Predicting shunt currents in stacks of bipolar plate cells with conducting manifolds[J].Journal of the Electrochemical Societ y, 1988,135 (7): 1609-1612.
  • 7WHITE R. Electrochemical Cell Design [M]. New York: Plenum Publishing Corp,1984:277-292.
  • 8KATZ M. Analysis of electrolyte shunt currents in fuel cell power plants[J].Journal of the Electrochemical Society, 1978,125:515-520.
  • 9KUHN A T, BOOTH J S. Electrical leakage current in bipolar cell stacks[J].Journal of Applied Electrochemistry, 1980,10:233-237.
  • 10KAMINSKI E A, SAVINELL R F.A technique for calculating shunt leakage and cell currents in bipolar stacks having divided or undivided cells [J].Journal of the Electrochemical Society, 1983,130(5): 1103-1107.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部