期刊文献+

基于大数据驱动的集成模型车辆热失控预测 被引量:1

Prediction of vehicle thermal runaway based on data driven ensemble learning model
下载PDF
导出
摘要 电池故障是新能源汽车热失控的主要威胁之一,开发一种算法预测汽车电池是否以及何时发生热失控,以便及时发送高温预警信息成为迫切需要。热失控的原因复杂而又多面,热失控或触发于动力电池内部,也可由外力触发,通过单纯的物理模型做出精确的预测较为困难。因此,构建了一种集成的机器学习算法,通过分别考虑电压和温度、异常电流、单电池一致性和过充电风险因素,构建集成模型。该集成模型由五个子模型组成,这些子模型与通过网格搜索选择的超参数相关联。为实现更加准确的预测,该方法基于实测大数据进行训练,算法实用且灵活,可预测现实场景中锂电池热失控的可能性。实验结果表明:综合误报率为0.1656,验证了该方法的可行性。 Battery failure is one of the main threats to the thermal runaway of new energy vehicles.It is urgent to develop an algorithm to predict whether and when the battery is out of control,so as to send high temperature warning information in time.The causes of thermal runaway are complex and multifaceted.The thermal runaway or triggered to the power battery can also be triggered by external forces.It is difficult to make accurate prediction by simple physical model.Therefore,an integrated machine learning algorithm was constructed,and an integrated model by considering voltage and temperature,abnormal current,single battery consistency and overcharge risk factors was constructed respectively.The integrated model consists of five sub models,which are associated with the super parameters selected by grid search.In order to achieve more accurate prediction,the method was trained based on the measured big data.The algorithm was practical and flexible,and could predict the possibility of lithium battery thermal runaway in real scenes.The experimental results show that the comprehensive false alarm rate is 0.1656,which verifies the feasibility of the method.
作者 刘伟霞 程淑隽 肖家勇 常伟 李源 LIUW eixia;CHENG Shujun;XIAO Jiayong;CHANG Wei;LI Yuan(Beijing Electric Vehicle Automobile Co.Ltd.,Beijing 100176,China;Shanghai CloudReady Technology Co.,Ltd.,Shanghai,200030,China)
出处 《电源技术》 CAS 北大核心 2022年第3期299-302,共4页 Chinese Journal of Power Sources
关键词 热失控 机器学习 实测数据 集成模型 thermal runaway machine learning measured data integrated model
  • 相关文献

参考文献1

二级参考文献8

  • 1RICHARD M N, DAHN J R. Predicting electrical and thermal abuse behavior of practical lithium-ion cells from accelerating rate ca- lorimeter studies on small samples in electrolyte [J]. Journal of Power Sources, 1999,79(2) .- 135-142.
  • 2BIENSAN P, SIMON B, PERES J P. On safety of lithium-ion cells [J]. Journal of Power Sources, 1999(81/82) : 906-912.
  • 3KAWAMURA T, KIMURA A, EGASHIRA M. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium-ion cells [J]. Journal of Power Sources, 2002,104(2) : 260-264.
  • 4PASQUIER A D, DISMA F, BOWMER T. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic li-ion batteries [J]. Journal of the Electrochemical Society, 1998,145 (2) : 472-477.
  • 5MALEKI H, DENG G, KERZHNER H I. Thermal stability of Li-ion cells and components [J]. Journal of the Electrochemical Society, 2000, 147(I 2) : 4470-4475.
  • 6RANDOLPH A L, MARCUS J P. Abuse testing of lithium-ion bat- teries characterization of the overcharge reaction of LiCoOJgraphite cells[J].Journal of the Electrochemical Society, 2001,148(8) :A838- A844.
  • 7TOBISHIMA S ,YAMAKI J. A consideration of lithium cell safety [J]. Journal of Power Sources, 1999(81/82) : 882-886.
  • 8OESTEN, HEIDER, SCHMIDT. Advanced electrolytes [J]. Solid State Ionies, 2002,148(3/4) : 391-397.

共引文献32

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部