期刊文献+

基于极化SAR相干斑模型的非局部均值相干斑抑制 被引量:1

Non-local Means Speckle Filtering Based on Polarimetric SAR Speckle Model
下载PDF
导出
摘要 随着高分辨率和极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,Pol-SAR)技术的发展,Pol-SAR应用前景越来越广阔,但是Pol-SAR数据中相干斑噪声的存在,严重影响了后续目标分类、目标检测和识别跟踪等应用。针对Pol-SAR相干斑去噪问题,提出了基于Pol-SAR相干斑模型的形状自适应非局部均值滤波算法。该算法对于极化协方差矩阵C的对角线元素和非对角线元素分别进行处理,对对角线元素按照乘性噪声模型处理,计算复相关系数,再对非对角线元素进行处理。实验结果表明,所提算法在极化SAR相干斑抑制上具有良好的效果。 With the development of high-resolution and polarimetric synthetic aperture radar(Pol-SAR)technology,the application prospect of Pol-SAR is getting wider and wider,but the existence of speckle noise in Pol-SAR data seriously affects the subsequent applications such as target classification,target detection and target recognition.Aiming at the denoising problem of Pol-SAR speckle,a shape-adaptive non-local means filtering algorithm based on Pol-SAR speckle model is proposed.The algorithm processes the diagonal elements and off-diagonal elements of the polarization covariance matrix C respectively.The diagonal elements are processed according to the multiplicative noise model,the complex correlation coefficient is calculated,and then the off-diagonal elements are processed.Experiment results show that the proposed algorithm has a good effect on speckle filtering in polarimetric SAR.
作者 杨国辉 王爽 刘立军 吕龙 刘轶群 YANG Guohui;WANG Shuang;LIU Lijun;LYU Long;LIU Yiqun(School of Information Science and Engineering,Lanzhou University,Lanzhou 730013,China;School of Cryptographic Engineering,Engineering University of People Armed Police,Xi’an 710086,China;School of Artificial Intelligence,Xidian University,Xi’an 710071 China)
出处 《无线电工程》 北大核心 2022年第3期368-375,共8页 Radio Engineering
基金 武警工程大学基础研究基金(WJY202142,WJY202012)。
关键词 极化SAR 相干斑噪声 非局部均值 相干斑模型 polarimetric SAR speckle noise non-local mean speckle model
  • 相关文献

参考文献2

二级参考文献27

  • 1李远禄,于盛林.非整数阶系统的频域辨识法[J].自动化学报,2007,33(8):882-884. 被引量:15
  • 2Loupas T, Mcdicken W N, Allan P L. An adaptive weighted median filter for speckle suppression in medical ultrasonic images[ J]. IEEE Transactions on Circuits System, 1989, 36( 1 ) : 129-135.
  • 3Dutt V, Greenleaf J F. Adaptive speckle reduction filter for logcompressed B-scan images [ J ]. IEEE Transactions on Medical Imaging, 1996, 15(6): 802-813.
  • 4Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [ J ]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1990, 12(7) : 629.
  • 5You Y L, Kaveh M. Fourth-order partial differential equations for noise removal[ J ]. IEEE Transactions on Image Processing, 2000, 9(10) : 1723-1730.
  • 6Whitaker R T, Pizer S M. A muhi-scale approach to nonuniform diffusion[ J]. Computer Vision Graphics Image Processing, Image Understand, 1993, 57(1): 99-110.
  • 7Black M J, Sapiro G, Hegger D. Robust anisotropic diffusion [ J]. IEEE Transactions on Image Processing, 1998, 7 (3) : 421-432.
  • 8Weickert J. Theoretical foundations of anisotropic diffusion in image processing[ J]. Computing, 1996, 11 (Suppl.) : 221-236.
  • 9You Y L, Xu W Y, Tannenbaum A, et al. Behavioral analysis of anisotropic diffusion in image processing [ J ]. IEEE Transactions on Image Processing, 1996, 5 ( 11 ) : 1539-1552.
  • 10Bigun J, Granlund G H, Wiklund J. Multidimensional orientation estimation with applications to texture analysis and optical flow [ J ]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1991, 13(8) : 775-790.

共引文献20

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部