期刊文献+

改进的稀疏网格配点法对EIT电导率分布的不确定性量化

Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution
下载PDF
导出
摘要 针对电阻抗成像(EIT)研究中电导率分布的不确定性问题,提出基于灵敏度分析的改进稀疏网格配点法以量化不确定性.以4层同心圆头模型为算例,采用基于方差的全局灵敏度分析法对其进行分析,发现各层电导率的变化对输出电位的影响程度各不相同.考虑模型中各维输入变量对输出结果不同程度的影响,改进传统稀疏网格配点法.改进方法对各维输入变量配置不同的精度水平,将EIT模型的隐式表达式转化为显式表达式,构造出高精度的替代模型.与蒙特卡洛(MC)法、混沌多项式展开(PCE)法和传统稀疏网格配点法相比,改进方法能够以更少的计算成本获得较高精度的量化结果.仿真结果验证了所提改进方法的高效性. An improved sparse grid collocation method based on sensitivity analysis was proposed to quantify the uncertainty,aiming at the uncertainty problem of conductivity distribution in electrical impedance tomography(EIT)research.The four-layer concentric circular head model was taken for simulation,and the variance-based global sensitivity analysis method was used to analyze the model.The results of sensitivity analysis show that the conductivity changes of each layer have different effects on the output potential.Furthermore,the influence of the input variables of each dimension in the model on the output results were considered,the traditional sparse grid collocation method was improved.The input variables of each dimension were assigned with different accuracy levels in the improved method,the implicit expression of the EIT model was transformed into an explicit expression and the high-precision substitute model was constructed.Compared with the Monte Carlo(MC)method,polynomial chaos expansion(PCE)method and traditional sparse grid collocation method,the results show that the improved method can obtain the more accurate quantified results with less calculation cost.The simulation results were given to verify the efficiency of the proposed improved method.
作者 李颖 王冠雄 闫伟 赵营鸽 马重蕾 LI Ying;WANG Guan-xiong;YAN Wei;ZHAO Ying-ge;MA Chong-lei(State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300130,China;Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health,Hebei University of Technology,Tianjin 300130,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第3期613-621,共9页 Journal of Zhejiang University:Engineering Science
基金 河北省自然科学基金资助项目(E2015202050).
关键词 电阻抗成像(EIT) 不确定性量化 蒙特卡洛(MC)法 混沌多项式展开(PCE)法 灵敏度分析法 稀疏网格配点法 electrical impedance tomography(EIT) uncertainty quantification Monte Carlo(MC)method polynomial chaos expansion(PCE)method sensitivity analysis method sparse grid collocation method
  • 相关文献

参考文献4

二级参考文献154

  • 1CUI LiJie,Lü ZhenZhou & ZHAO XinPan School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China.Moment-independent importance measure of basic random variable and its probability density evolution solution[J].Science China(Technological Sciences),2010,53(4):1138-1145. 被引量:43
  • 2赵琳,罗汉,刘京.加权马氏距离判别分析方法及其权值确定——旅游信息服务系统的智能推荐[J].经济数学,2007,24(2):185-188. 被引量:16
  • 3Fishman G S. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer-Verlag, 1996.
  • 4Loh W. On Latin hypercube sampling. Ann Statist, 1996, 24: 2058-2080.
  • 5Stein M. Large sample properties of simulations using Latin Hypercube Sampling. Technometrics, 1987, 29: 143-151.
  • 6Niederreiter H. Random Number Generation and Quasi-Monte Carlo Methods. Philadelphia: SIAM, 1992.
  • 7Niederreiter H, Hellekalek P, Larcher G, et al. Monte Carlo and Quasi-Monte Carlo Methods 1996. New York: Springer-Verlag, 1998.
  • 8Liu W, Belytschko T, Mani A. Probabilistic finite elements for nonlinear structural dynamics. Comput Methods Appl Mech Engrg, 1986, 56: 61-81.
  • 9Liu W, Belytschko T, Mani A. Random field finite elements. Internat J Numer Methods Engrg, 1986, 23: 1831-1845.
  • 10Zhang D X. Stochastic Methods for Flow in Porous Media. New York: Academic Press, 2002.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部