期刊文献+

基于群体熵的机器人群体智能汇聚度量 被引量:1

Emergence measurement of robot swarm intelligence based on swarm entropy
下载PDF
导出
摘要 群体行为往往能产生远超个体行为的价值和复杂度。为了在个体智能的基础上更有效地衍生出群体智能,需要基于群体熵来科学地衡量群体智能水平,并以群体熵为引导目标,推动群体智能的增强和演进。针对这个重要的科学问题,以无人小车群体为研究对象,提出基于参数共享和群体策略熵的多智能体soft Q learning算法,通过共享智能体的观测信息,并结合最大熵强化学习方法,实现探索型任务中群体策略的持续学习更新。同时,通过将群体熵定义为度量工具,刻画群体学习中熵变化模式,实现对群智汇聚过程的定量分析。 Swarm behavior can often produce value and complexity far beyond individual behavior.In order to more ef-fectively derive swarm intelligence on the basis of individual intelligence,it is necessary to scientifically measure the level of swarm intelligence based on swarm entropy,and use swarm entropy as the guiding goal to promote the enhance-ment and evolution of swarm intelligence.Aiming at this important scientific problem,the unmanned car group as the re-search object was taken and a multi-agent soft Q learning method based on parameter sharing and group strategy entropy was proposed.Which by sharing the observation information of the agent,combined with the maximum entropy rein-forcement learning method,to achieve continuous learning and updating of swarm strategies in exploratory tasks.At the same time,by defining swarm entropy as a measurement tool,characterizing the entropy change pattern in swarm learn-ing,realizing the quantitative analysis of the gathering process of swarm intelligence.
作者 冯埔 吴文峻 罗杰 于鑫 田雍恺 FENG Pu;WU Wenjun;LUO Jie;YU Xin;TIAN Yongkai(School of Computer Science and Engineering,Beihang University,Beijing 100191,China;Institute of Artificial Intelligence,Beihang University,Beijing 100191,China)
出处 《智能科学与技术学报》 2022年第1期65-74,共10页 Chinese Journal of Intelligent Science and Technology
基金 科技创新2030—“新一代人工智能”重大项目(No.2018AAA0102300)。
关键词 群体熵 群体智能 深度强化学习 swarm entropy swarm intelligence deep reinforcement learning
  • 相关文献

参考文献3

二级参考文献7

共引文献90

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部